⑴ 阿里小貸是基於大數據的金融服務平台模式么
是的,基於大數據。
延伸(來自公開):
14年2月20日,阿里金融旗下阿里小貸首次向外界透露了其獨特的大數據授信審貸模型——水文模型。
水文模型的學術定義是將自然系統符號化,通過數學模型模擬水文現象。
而阿里小貸的水文模型,可以理解為建立龐大的資料庫,不僅包括貸款客戶自身長期的數據變化,還有參考同類企業的數據情況,以這些數據為依據,通過數學方法以及各種參數,判斷客戶未來的情況。
最終在阿里小貸業務決策中,水文模型將為公司決策層提供客觀的分析和建議,並對業務形成優化。
舉例來說,如果某個店鋪的旺季是夏天,每年夏天銷售都大幅增長,那麼每年夏天,這個店鋪對外投放額度也就會上升。通過阿里小貸的水文模型,可以按照歷史數據,判斷出這一店鋪在這一時期的資金需求。
同時,對比該店鋪其他時間的數據,判斷出該店鋪各個時段的資金需求,從而向店鋪給出恰當的貸款。
相反,如果不進行對比,只是以夏天銷售旺季的數據作為依據,那很可能為該店鋪提供過多資金。
在水文模型的幫助下,阿里小貸迅速發展,2014年2月,阿里小貸累計投放貸款超過1700億元,服務小微企業超過70萬家,不良率小於1%。其中,2013年新增貸款1000億元。
不過阿里的水文模型可能只是用於阿里這樣的互聯網金融公司,對傳統小額貸款公司來說,這一模型有一定壁壘。
阿里小貸主要是淘寶貸款和阿里貸款,提供的服務主要是淘寶(天貓)信用貸款、訂單貸款以及阿里信用貸款,和傳統小額貸款公司不同,阿里的客戶主要是淘寶、阿里巴巴上的店鋪,由於這些店鋪通過淘寶和阿里巴巴平台經營,所以阿里小貸可以輕易獲得客戶的歷史數據。
大數據的優勢,可能只有網路、騰訊這樣同一級別的互聯網巨頭可以媲美。目前網路小貸公司也已在2013年9月獲批,服務對象優先考慮網路推廣的客戶;騰訊旗下財付通的財付通小貸於2013年11月獲批,財付通小貸目標客戶是騰訊旗下電商企業。
網路和騰訊本身互聯網基因以及旗下小貸公司的目標客戶,決定了他們可以和阿里小貸一樣建立完善的資料庫,並建立大數據模型。這是傳統小額貸款公司所不具備的。
或許當互聯網小貸公司建立完備的大數據模型以後,一場小額貸款的互聯網VS實體公司的戰役將展開。
⑵ 什麼是小額貸款公司
小額信用貸款是農村信用社基於借款人的信譽,在核定的額度和期限內向農戶、農村版工商戶以及農村小權企業提供的額度較小的貸款。
小額貸款對象除了家庭傳統耕作農戶和養殖戶外,還包括農村多種經營戶、個體工商戶以及農村各類微小企業。具體包括種養大戶、訂單農業戶、進城務工經商戶、小型加工戶、運輸戶、農產品流通戶和其他與「三農」有關的城鄉個體經營戶。
⑶ 金融行業大數據是怎麼做的
如中投在線網站很多基於大數據處理的,該網站的理財產品實在太多了,都是用大數據來做批處理的。
⑷ 大數據時代來臨,我們金融業構建大數據平台,信息共享平台的需求愈發強烈,請問構建平台的軟體公司怎麼樣
打破信息孤島建設大數據中心的前提是要能把不同軟體系統的數據採集起來,存儲到資料庫,才能供下一步的數據發掘、數據分析、數據清洗等工作,所以數據採集是基礎,而不同的系統的數據採集就需要用101 異構數據採集引擎才能採集,她最大好處在於不需要軟體廠商配合,直接採集數據,實現了高效率低成本採集異構數據。
⑸ 金融大數據平台應該如何搭建及應用是否有金融案例可以借鑒的
金融大數據平台的搭建和應用是兩個部分,對於金融大數據平台來說,這兩個部分都很重要。所以以下的部分我們從大數據平台和銀行可以分析哪些指標這兩個角度來闡述。
大數據平台的整體架構可以由以下幾個部分組成:
1.一個客戶
客戶主題:客戶屬性(客戶編號、客戶類別)、指標(資產總額、持有產品、交易筆數、交易金額、RFM)、簽約(渠道簽約、業務簽約)組成寬表
2.做了一筆交易
交易主題:交易金融屬性、業務類別、支付通道組成寬表。
3.使用哪個賬戶
賬戶主題:賬戶屬性(所屬客戶、開戶日期、所屬分行、產品、利率、成本)組成寬表
4.通過什麼渠道
渠道主題:
渠道屬性、維度、限額組成寬表
5.涉及哪類業務&產品
產品主題:產品屬性、維度、指標組成寬表
鑒於篇幅問題,此處可以參考這篇文章:
華夏銀行:大數據技術服務業務需求,實現銷售高速增長
⑹ 什麼是大數據金融
就是建立在大規模數據信息上的金融行為。例如網路推出大數據炒股理財。
⑺ 中國有哪些金融大數據公司
中科院附屬《互聯網周刊》發布了2021年金融大數據30強榜單,並評選出今年以來在金融大數據方面取得突出進展的代表性企業。隨著大數據和人工智慧技術在金融領域的創新與實踐,融匯金科上榜了!《互聯網周刊》創刊於1998年,是中國互聯網和it行業最成功的主流商業雜志之一。早在幾年前,《互聯網周刊》就開始在互聯網行業發布各類榜單,在業內具有很高的權威性。此次入選榜單,無疑是對榮輝金科強大的研發能力和行業領先的金融科技布局的肯定。
中國金融服務業大數據分析服務市場總收入1093億元,其中金融風險管理收入323億元,客戶生命周期管理收入770億元,後者包括吸引新客戶和現有客戶管理。預計2019年至2024年,大數據分析服務市場將繼續保持快速增長,2024年將達到2524億元人民幣,年復合增長率為18.2%。准確、客觀、中立的大數據分析結果是客戶尋求大數據分析服務的關鍵要素。獨立服務商可以更准確地識別客戶需求,避免利益沖突,保持客觀性和中立性,更好地服務客戶。2014年至2019年,金融服務業獨立大數據分析服務提供商的市場份額將從2.3%提高到9.7%,預計2024年將進一步提高到16.8%。