『壹』 大數據技術在金融行業中的典型應用
大數據技術在金融行業中的典型應用
近年來,我國金融科技快速發展,在多個領域已經走在世界前列。大數據、人工智慧、雲計算、移動互聯網等技術與金融業務深度融合,大大推動了我國金融業轉型升級,助力金融更好地服務實體經濟,有效促進了金融業整體發展。在這一發展過程中,又以大數據技術發展最為成熟、應用最為廣泛。從發展特點和趨勢來看,「金融雲」快速建設落地奠定了金融大數據的應用基礎,金融數據與其他跨領域數據的融合應用不斷強化,人工智慧正在成為金融大數據應用的新方向,金融行業數據的整合、共享和開放正在成為趨勢,給金融行業帶來了新的發展機遇和巨大的發展動力。
大數據在金融行業的典型應用場景
大數據涉及的行業過於廣泛,除金融外,還包括政治、教育、傳媒、醫學、商業、工農業、互聯網等多個方面,各行業對大數據的定義目前尚未統一。大數據的特點可歸納為「4V」。第一,數據體量大(Volume),海量性也許是與大數據最相關的特徵。第二,數據類型繁多(Variety),大數據既包括以事務為代表的傳統結構化數據,還包括以網頁為代表的半結構化數據和以視頻、語音信息為代表的非結構化數據。第三,價值密度低(Value),大數據的體量巨大,但數據中的價值密度卻很低。比如幾個小時甚至幾天的監控視頻中,有價值的線索或許只有幾秒鍾。第四,處理速度快(Velocity),大數據要求快速處理,時效性強,要進行實時或准實時的處理。
金融行業一直較為重視大數據技術的發展。相比常規商業分析手段,大數據可以使業務決策具有前瞻性,讓企業戰略的制定過程更加理性化,實現生產資源優化分配,依據市場變化迅速調整業務策略,提高用戶體驗以及資金周轉率,降低庫存積壓的風險,從而獲取更高的利潤。
當前,大數據在金融行業典型的應用場景有以下幾個方面:
在銀行業的應用主要表現在兩個方面:一是信貸風險評估。以往銀行對企業客戶的違約風險評估多基於過往的信貸數據和交易數據等靜態數據,內外部數據資源整合後的大數據可提供前瞻性預測。二是供應鏈金融。利用大數據技術,銀行可以根據企業之間的投資、控股、借貸、擔保及股東和法人之間的關系,形成企業之間的關系圖譜,利於企業分析及風險控制。
在證券行業的應用主要表現為:一是股市行情預測。大數據可以有效拓寬證券企業量化投資數據維度,幫助企業更精準地了解市場行情,通過構建更多元的量化因子,投研模型會更加完善。二是股價預測。大數據技術通過收集並分析社交網路如微博、朋友圈、專業論壇等渠道上的結構化和非結構化數據,形成市場主觀判斷因素和投資者情緒打分,從而量化股價中人為因素的變化預期。三是智能投資顧問。智能投資顧問業務提供線上投資顧問服務,其基於客戶的風險偏好、交易行為等個性化數據,依靠大數據量化模型,為客戶提供低門檻、低費率的個性化財富管理方案。
在互聯網金融行業的應用,一是精準營銷。大數據通過用戶多維度畫像,對客戶偏好進行分類篩選,從而達到精準營銷的目的。二是消費信貸。基於大數據的自動評分模型、自動審批系統和催收系統可降低消費信貸業務違約風險。
金融大數據的典型案例分析
為實時接收電子渠道交易數據,整合銀行內系統業務數據。中國交通銀行通過規則欲實現快速建模、實時告警與在線智能監控報表等功能,以達到實時接收官網業務數據,整合客戶信息、設備畫像、位置信息、官網交易日誌、瀏覽記錄等數據的目的。
該系統通過為交通銀行卡中心構建反作弊模型、實時計算、實時決策系統,幫助擁有海量歷史數據,日均增長超過兩千萬條日誌流水的銀行卡中心,形成電子渠道實時反欺詐交易監控能力。利用分布式實時數據採集技術和實時決策引擎,幫助信用卡中心高效整合多系統業務數據,處理海量高並發線上行為數據,識別惡意用戶和欺詐行為,並實時預警和處置;通過引入機器學習框架,對少量數據進行分析、挖掘構建並周期性更新反欺詐規則和反欺詐模型。
系統上線後,該銀行迅速監控電子渠道產生的虛假賬號、偽裝賬號、異常登錄、頻繁登錄等新型風險和欺詐行為;系統穩定運行,日均處理逾兩千萬條日誌流水、實時識別出近萬筆風險行為並進行預警。數據接入、計算報警、案件調查的整體處理時間從數小時降低至秒級,監測時效提升近3000倍,上線3個月已幫助卡中心挽回數百萬元的風險損失。
網路的搜索技術正在全面注入網路金融。網路金融使用的梯度增強決策樹演算法可以分析大數據高維特點,在知識分析、匯總、聚合、提煉等多個方面有其獨到之處,其深度學習能力利用數據挖掘演算法能夠較好地解決大數據價值密度低等問題。網路「磐石」系統基於每日100億次搜索行為,通過200多個維度為8.6億賬號精確畫像,高效劃分人群,能夠為銀行、互聯網金融機構提供身份識別、反欺詐、信息檢驗、信用分級等服務。該系統累計為網路內部信貸業務攔截數十萬欺詐用戶,攔截數十億不良資產、減少數百萬人力成本,累計合作近500家社會金融機構,幫助其提升了整體風險防控水平。
金融大數據應用面臨的挑戰及對策
大數據技術為金融行業帶來了裂變式的創新活力,其應用潛力有目共睹,但在數據應用管理、業務場景融合、標准統一、頂層設計等方面存在的瓶頸也有待突破。
一是數據資產管理水平仍待提高。主要體現在數據質量不高、獲取方式單一、數據系統分散等方面。
二是應用技術和業務探索仍需突破。主要體現在金融機構原有的數據系統架構相對復雜,涉及的系統平台和供應商較多,實現大數據應用的技術改造難度很大。同時,金融行業的大數據分析應用模型仍處於起步階段,成熟案例和解決方案仍相對較少,需要投入大量的時間和成本進行調研和試錯。系統誤判率相對較高。
三是行業標准和安全規范仍待完善。金融大數據缺乏統一的存儲管理標准和互通共享平台,對個人隱私的保護上還未形成可信的安全機制。
四是頂層設計和扶持政策還需強化。體現在金融機構間的數據壁壘較為明顯,各自為戰問題突出,缺乏有效的整合協同。同時,行業應用缺乏整體性規劃,分散、臨時、應激等特點突出,信息價值開發仍有較大潛力。
以上問題,一方面需要國家出台促進金融大數據發展的產業規劃和扶持政策,同時,也需要行業分階段推動金融數據開放、共享和統一平台建設,強化行業標准和安全規范。只有這樣,大數據技術才能在金融行業中穩步應用發展,不斷推動金融行業的發展提升。
『貳』 大數據在金融業的應用可以發揮哪些作用
有了大數據,自然就要有大數據技術,即從各種各樣類型的巨量數據中,快速獲取有價值信息的技術,強調快,這是大數據技術與傳統數據挖掘技術的重要區別。
從巨量數據中提取的有價值信息,即是大數據在各個領域的具體運用,比如基於大數據進行客群的細分,進而提供定製化服務;基於大數據模擬現實環境,進而進行精準評估和預測;基於大數據進行產品和模式創新,降低業務成本、提升經營效率等等。
『叄』 大數據在金融領域中有哪些應用
大數據在金融領域中有哪些應用?應用很廣,定價、授信、風控領域尤其多,我這邊主要用到的分析軟體是單位的帆軟FineBI系統,應用案例隨便說兩個:
車險。其實根據車主的日常行車路線、里程、行車習慣、出險記錄、職業、年齡、性別,可以給出非常不同的定價。比如一個開中級車,每天固定路線往返幾公里通勤的熟練女白領車主,和一個開同樣車型每天在珠三角或者長三角跑生意的中年暴躁小老闆車主,假設後者出險概率是前者的3倍,那麼完全可以定3倍於前者的價格(商業部分)。對於保險公司,前者才是優質客戶,後者做了生意也是賠錢貨,不如趕到競爭對手那裡去。
貸款。現在各種小額貸款、消費貸款、供應鏈金融,都是在吃4大行懶得吃的散客市場,之所以他們懶得吃,就是怕麻煩。最麻煩的就是授信環節,對於一個沒有固定資產等擔保物的客戶,能授信多少額度是個問題。淘寶能做小微是因為商家的流水在他們手裡,白領的消費貸敢做是因為有穩定的現金流收入。但除了淘寶可以做到比較准確的模型,其他的業務都非常的粗放,基本每個領域都是根據幾條死規則來做業務。這意味著這個市場還有很大的潛力可以挖掘,比如一個小老闆,其實風險不大,他需要100w周轉,但你沒把握估算他的風險,只敢貸50w出去,就少賺了那50w的利息。
『肆』 大數據目在銀行主要應用於以下哪個領域
你好,目前在銀行使用大數據,主要集中在客戶管理,以及風險防控方面。
『伍』 大數據在金融領域有何應用
你好!大數據在當今社會任何一個領域都有很大用處,比如金融領域,這樣可以通過大數據幫助投資者投資
『陸』 大數據能否運用於銀行業
可以!但想要充分發揮大數據技術的作用,必須要求數據足夠多、足夠規范,才能在此基礎上進行分析和預測。同時,隨著信息化改造的逐步深化,現代銀行多使用電子文件代替了紙質文件,更易引用和保存,目前資料庫編程技術足夠成熟,在銀行對現有數據進行整合之後,由相關資料庫編程技術人員通過創建銀行內部資料庫,實現數據的完整性和統一性,為大數據分析和預測打下基礎,進而推動銀行業務的拓展。如:使用大數據技術實現發現潛在客戶和預測投資風險等功能。
『柒』 大數據技術在金融行業有哪些應用前景
大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到10年,金融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。
『捌』 金融機構銀行大數據的應用有哪些
銀行多源異構的數據類型是首先需要被考慮的。只有將多源異構的數據處理好,為應用建設打好基礎,銀行建設的大數據項目才有意義。銀行的數據類型可分為結構化數據、半結構化數據與非結構化數據三大類型。