㈠ 怎樣用python處理股票
用Python處理股票需要獲取股票數據,以國內股票數據為例,可以安裝Python的第三方庫:tushare;一個國內股票數據獲取包。可以在網路中搜索「Python tushare」來查詢相關資料,或者在tushare的官網上查詢說明文檔。
㈡ 自動化交易,用C好,還是Python
如果做android自動化測試,主學java 如果只是做自動化測試,學python,因為python在自動化方面,能做到比java更多
㈢ 怎麼在我的電腦上監控伺服器上運行的一個用Python寫的股票自動化交易的文件運行的各種參數和運行情況
http://www.supervisord.org/
㈣ 如何用Python和機器學習炒股賺錢
相信很多人都想過讓人工智慧來幫你賺錢,但到底該如何做呢?瑞士日內瓦的一位金融數據顧問 Gaëtan Rickter 近日發表文章介紹了他利用 Python 和機器學習來幫助炒股的經驗,其最終成果的收益率跑贏了長期處於牛市的標准普爾 500 指數。雖然這篇文章並沒有將他的方法完全徹底公開,但已公開的內容或許能給我們帶來如何用人工智慧炒股的啟迪。
我終於跑贏了標准普爾 500 指數 10 個百分點!聽起來可能不是很多,但是當我們處理的是大量流動性很高的資本時,對沖基金的利潤就相當可觀。更激進的做法還能得到更高的回報。
這一切都始於我閱讀了 Gur Huberman 的一篇題為《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的論文。該研究描述了一件發生在 1998 年的涉及到一家上市公司 EntreMed(當時股票代碼是 ENMD)的事件:
「星期天《紐約時報》上發表的一篇關於癌症治療新葯開發潛力的文章導致 EntreMed 的股價從周五收盤時的 12.063 飆升至 85,在周一收盤時接近 52。在接下來的三周,它的收盤價都在 30 以上。這股投資熱情也讓其它生物科技股得到了溢價。但是,這個癌症研究方面的可能突破在至少五個月前就已經被 Nature 期刊和各種流行的報紙報道過了,其中甚至包括《泰晤士報》!因此,僅僅是熱情的公眾關注就能引發股價的持續上漲,即便實際上並沒有出現真正的新信息。」
在研究者給出的許多有見地的觀察中,其中有一個總結很突出:
「(股價)運動可能會集中於有一些共同之處的股票上,但這些共同之處不一定要是經濟基礎。」
我就想,能不能基於通常所用的指標之外的其它指標來劃分股票。我開始在資料庫裡面挖掘,幾周之後我發現了一個,其包含了一個分數,描述了股票和元素周期表中的元素之間的「已知和隱藏關系」的強度。
我有計算基因組學的背景,這讓我想起了基因和它們的細胞信號網路之間的關系是如何地不為人所知。但是,當我們分析數據時,我們又會開始看到我們之前可能無法預測的新關系和相關性。
如果你使用機器學習,就可能在具有已知和隱藏關系的上市公司的寄生、共生和共情關系之上搶佔先機,這是很有趣而且可以盈利的。最後,一個人的盈利能力似乎完全關乎他在生成這些類別的數據時想出特徵標簽(即概念(concept))的強大組合的能力。
我在這類模型上的下一次迭代應該會包含一個用於自動生成特徵組合或獨特列表的單獨演算法。也許會基於近乎實時的事件,這可能會影響那些具有隻有配備了無監督學習演算法的人類才能預測的隱藏關系的股票組。
㈤ python量化哪個平台可以回測模擬實盤還不要錢
Python量化投資框架:回測+模擬+實盤
Python量化投資 模擬交易 平台 1. 股票量化投資框架體系 1.1 回測 實盤交易前,必須對量化交易策略進行回測和模擬,以確定策略是否有效,並進行改進和優化。作為一般人而言,你能想到的,一般都有人做過了。回測框架也如此。當前小白看到的主要有如下五個回測框架: Zipline :事件驅動框架,國外很流行。缺陷是不適合國內市場。 PyAlgoTrade : 事件驅動框架,最新更新日期為16年8月17號。支持國內市場,應用python 2.7開發,最大的bug在於不支持3.5的版本,以及不支持強大的pandas。 pybacktest :以處理向量數據的方式進行回測,最新更新日期為2個月前,更新不穩定。 TradingWithPython:基於pybacktest,進行重構。參考資料較少。 ultra-finance:在github的項目兩年前就停止更新了,最新的項目在谷歌平台,無奈打不開網址,感興趣的話,請自行查看吧。 RQAlpha:事件驅動框架,適合A股市場,自帶日線數據。是米筐的回測開源框架,相對而言,個人更喜歡這個平台。 2 模擬 模擬交易,同樣是實盤交易前的重要一步。以防止類似於當前某券商的事件,半小時之內虧損上億,對整個股市都產生了惡劣影響。模擬交易,重點考慮的是程序的交易邏輯是否可靠無誤,數據傳輸的各種情況是否都考慮到。 當下,個人看到的,喜歡用的開源平台是雪球模擬交易,其次是wind提供的模擬交易介面。像優礦、米筐和聚寬提供的,由於只能在線上平台測試,不甚自由,並無太多感覺。 雪球模擬交易:在後續實盤交易模塊,再進行重點介紹,主要應用的是一個開源的easytrader系列。 Wind模擬交易:若沒有機構版的話,可以考慮應用學生免費版。具體模擬交易介面可參看如下鏈接:http://www.dajiangzhang.com/document 3 實盤 實盤,無疑是我們的終極目標。股票程序化交易,已經被限制。但對於萬能的我們而言,總有解決的辦法。當下最多的是破解券商網頁版的交易介面,或者說應用爬蟲爬去操作。對我而言,比較傾向於食燈鬼的easytrader系列的開源平台。對於機構用戶而言,由於資金量較大,出於安全性和可靠性的考慮,並不建議應用。 easytrader系列當前主要有三個組成部分: easytrader:提供券商華泰/傭金寶/銀河/廣發/雪球的基金、股票自動程序化交易,量化交易組件 easyquotation : 實時獲取新浪 / Leverfun 的免費股票以及 level2 十檔行情 / 集思路的分級基金行情 easyhistory : 用於獲取維護股票的歷史數據 easyquant : 股票量化框架,支持行情獲取以及交易 2. 期貨量化投資框架體系 一直待在私募或者券商,做的是股票相關的內容,對期貨這塊不甚熟悉。就根據自己所了解的,簡單總結一下。 2.1 回測 回測,貌似並沒有非常流行的開源框架。可能的原因有二:期貨相對股票而言,門檻較高,更多是機構交易,開源較少; 去年至今對期貨監管控制比較嚴,至今未放開,只能做些CTA的策略,另許多人興致泱泱吧。 就個人理解而言,可能wind的是一個相對合適的選擇。 2.2 模擬 + 實盤 vn.py是國內最為流行的一個開源平台。起源於國內私募的自主交易系統,2015年初啟動時只是單純的交易API介面的Python封裝。隨著業內關注度的上升和社區不斷的貢獻,目前已經一步步成長為一套全面的交易程序開發框架。如官網所說,該框架側重的是交易模塊,回測模塊並未支持。 能力有限,如果對相關框架感興趣的話,就詳看相關的鏈接吧。個人期望的是以RQAlpha為主搭建回測框架,以雪球或wind為主搭建模擬框架,用easy系列進行交易。
㈥ 如何實現股票或者期貨的自動化交易
程序化交易跟機械化交易本質沒啥區別
只是自動化而已
跟高手能不能拼在於
首先如何定位高手?
比如,年收益100倍?10倍?1倍?0.3倍?
其實這些神話都有人實現過?
拉瑞就實現過年收益100倍,但我們為啥在富豪榜中能看到巴菲特,而沒有拉瑞?
拉瑞的確是高手,但是他肯定不穩定,或者在高收益的要求下不穩定
手動交易的思路我覺得跟主觀交易的思路是不同的
一般人想把主觀的思路程序化,這也許可能(有句話叫:沒有什麼不可能嘛)
但對初學者,這樣做會讓你很累,
程序就走機械的路,主觀就走靈活的路
㈦ 如何用 python 和機器學習炒股賺錢
很難實現。
因為所有的機器學習,都需要人為的指定學習的「特徵」,也就是為構建的智能體,指定通過哪些條件來自主的做出選擇。
而影響股票漲跌的條件,實在是太繁多太不穩定了,比如你可以讓智能體每天自動爬取一些股票分析網站的文章,通過自然語言處理分析出該網站對某些支股票的傾向,作為一個特徵。但是這個特徵就太片面而且並不一定準確。
㈧ python 怎麼下單炒股票
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
㈨ 怎樣用 Python 寫一個股票自動買賣的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧