『壹』 光纖是由什麼組成
一, 光纖的分類
光纖是光導纖維(OF:Optical Fiber)的簡稱。但光通信系統中常常將 Optical Fibe(光纖)又簡化為 Fiber,例如:光纖放大器(FiberAmplifier)或光纖干線(Fiber Backbone)等等。有人忽略了Fiber雖有纖維的含義,但在光系統中卻是指光纖而言的。因此,有些光產品的說明中,把fiber直譯成「纖維」,顯然是不可取的。
光纖實際是指由透明材料作成的纖芯和在它周圍採用比纖芯的折射率稍低的材
料作成的包層所被覆,並將射入纖芯的光信號,經包層界面反射,使光信號在纖芯中傳播前進的媒體。
光纖的種類很多,根據用途不同,所需要的功能和性能也有所差異。但對於有線電視和通信用的光纖,其設計和製造的原則基本相同,諸如:①損耗小;②有一定帶寬且色散小;③接線容易;④易於成統;⑤可靠性高;⑥製造比較簡單;⑦價廉等。
光纖的分類主要是從工作波長、折射率分布、傳輸模式、原材料和製造方法上作一歸納的,茲將各種分類舉例如下。
(1)工作波長:紫外光纖、可觀光纖、近紅外光纖、紅外光纖(0.85pm 1.3pm、1.55pm)。
(2)折射率分布:階躍(SI)型、近階躍型、漸變(GI)型、其它(如三角型、W型、凹陷型等)。
(3)傳輸模式:單模光纖(含偏振保持光纖、非偏振保持光纖)、多模光纖。
(4)原材料:石英玻璃、多成分玻璃、塑料、復合材料(如塑料包層、液體纖芯等)、紅外材料等。按被覆材料還可分為無機材料(碳等)、金屬材料(銅、鎳等)和塑料等。
(5)製造方法:預塑有汽相軸向沉積(VAD)、化學汽相沉積(CVD)等,拉絲法有管律法(Rod intube)和雙坩鍋法等。
二, 石英光纖
是以二氧化硅(SiO2)為主要原料,並按不同的摻雜量,來控制纖芯和包層的折射率分布的光纖。石英(玻璃)系列光纖,具有低耗、寬頻的特點,現在已廣泛應用於有線電視和通信系統。
摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為1.3Pm波域的通信用光纖中,控制纖芯的摻雜物為二氧化緒(GeO2),包層是用SiO炸作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動因素的摻雜物,以少為佳。
氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。由於摻氟光纖中,纖芯並不含有影響折射率的氟素摻雜物。由於它的瑞利散射很小,而且損耗也接近理論的最低值。所以多用於長距離的光信號傳輸。
石英光纖(Silica Fiber)與其它原料的光纖相比,還具有從紫外線光到近紅外線光的透光廣譜,除通信用途之外,還可用於導光和傳導圖像等領域。
三, 紅外光纖
作為光通信領域所開發的石英系列光纖的工作波長,盡管用在較短的傳輸距離,也只能用於2pm。為此,能在更長的紅外波長領域工作,所開發的光纖稱為紅外光纖。
紅外光纖(Infrared Optical Fiber)主要用於光能傳送。例如有:溫度計量、熱圖像傳輸、激光手術刀醫療、熱能加工等等,普及率尚低。
四, 復台光纖
復合光纖(Compound Fiber)在SiO2原料中,再適當混合諸如氧化鈉(Na2O)、氧化硼(B2O2)、氧化鉀(K2O2)等氧化物的多成分玻璃作成的光纖,特點是多成分玻璃比石英的軟化點低且纖芯與包層的折射率差很大。主要用在醫療業務的光纖內窺鏡。
五, 氟化物光纖
氯化物光纖(Fluoride Fiber)是由氟化物玻璃作成的光纖。這種光纖原料又簡稱 ZBLAN(即將氟化鋁(ZrF4)、氰化鋇(BaF2)、氟化鑭(LaF3)、氟化鋁(A1F2)、氰化鈉(NaF)等氯化物玻璃原料簡化成的縮語。主要工作在2~ 10pm波長的光傳輸業務。
由於ZBLAN具有超低損耗光纖的可能性,正在進行著用於長距離通信光纖的可行性開發,例如:其理論上的最低損耗,在3pm波長時可達10-2~10-3dB/km,而石英光纖在1.55pm時卻在0.15~0.16dB/Km之間。
目前,ZBLAN光纖由於難於降低散射損耗,只能用在2.4~2.7pm的溫敏器和熱
圖像傳輸,尚未廣泛實用。
最近,為了利用ZBLAN進行長距離傳輸,正在研製1.3pm的摻錯光纖放大器(PDFA)。
六, 塑包光纖
塑包光纖(Plastic Clad Fiber)是將高純度的石英玻璃作成纖芯,而將折射率比石英稍低的如硅膠等塑料作為包層的階躍型光纖。它與石英光纖相比較,具有纖芯租、數值孔徑(NA)高的特點。因此,易與發光二極體LED光源結合,損耗也較小。所以,非常適用於區域網(LAN)和近距離通信。
七, 塑料光纖
這是將纖芯和包層都用塑料(聚合物)作成的光纖。早期產品主要用於裝飾和導光照明及近距離光鍵路的光通信中。
原料主要是有機玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。損耗受到塑料固有的C-H結合結構制約,一般每km可達幾十dB。為了降低損耗正在開發應用氟索系列塑料。由於塑料光纖(Plastic Optical fiber)的纖芯直徑為1000pm,比單模石英光纖大100倍,接續簡單,而且易於彎曲施工容易。近年來,加上寬頻化的進度,作為漸變型(GI)折射率的多模塑料光纖的發展受到了社會的重視。最近,在汽車內部LAN中應用較快,未來在家庭LAN中也可能得到應用。
八, 單模光纖
這是指在工作波長中,只能傳輸一個傳播模式的光纖,通常簡稱為單模光纖
(SMF:Single ModeFiber)。目前,在有線電視和光通信中,是應用最廣泛的光纖。
由於,光纖的纖芯很細(約10pm)而且折射率呈階躍狀分布,當歸一化頻率V參數<2.4時,理論上,只能形成單模傳輸。另外,SMF沒有多模色散,不僅傳輸頻帶較多模光纖更寬,再加上SMF的材料色散和結構色散的相加抵消,其合成特性恰好形成零色散的特性,使傳輸頻帶更加拓寬。
SMF中,因摻雜物不同與製造方式的差別有許多類型。凹陷型包層光纖(DePr-essed Clad Fiber),其包層形成兩重結構,鄰近纖芯的包層,較外倒包層的折射率還低。另外,有匹配型包層光纖,其包層折射率呈均勻分布。
九, 多模光纖
將光纖按工作彼長以其傳播可能的模式為多個模式的光纖稱作多模光纖(MMF:MUlti ModeFiber)。纖芯直徑為50pm,由於傳輸模式可達幾百個,與SMF相比傳輸帶寬主要受模式色散支配。在歷史上曾用於有線電視和通信系統的短距離傳輸。自從出現SMF光纖後,似乎形成歷史產品。但實際上,由於MMF較SMF的芯徑大且與LED等光源結合容易,在眾多LAN中更有優勢。所以,在短距離通信領域中MMF仍在重新受到重視。
MMF按折射率分布進行分類時,有:漸變(GI)型和階躍(SI)型兩種。GI型的折射率以纖芯中心為最高,沿向包層徐徐降低。從幾何光學角度來看,在纖芯中前進的光束呈現以蛇行狀傳播。由於,光的各個路徑所需時間大致相同。所以,傳輸容量較SI型大。
SI型MMF光纖的折射率分布,纖芯折射率的分布是相同的,但與包層的界面呈階梯狀。由於SI型光波在光纖中的反射前進過程中,產生各個光路徑的時差,致使射出光波失真,色激較大。其結果是傳輸帶寬變窄,目前SI型MMF應用較少。
十, 色散使移光纖
單模光纖的工作波長在1.3Pm時,模場直徑約9Pm,其傳輸損耗約0.3dB/km。此時,零色散波長恰好在1.3pm處。
石英光纖中,從原材料上看1.55pm段的傳輸損耗最小(約0.2dB/km)。由於現在已經實用的摻鉺光纖放大器(EDFA)是工作在1.55pm波段的,如果在此波段也能實現零色散,就更有利於應用1.55Pm波段的長距離傳輸。
於是,巧妙地利用光纖材料中的石英材料色散與纖芯結構色散的合成抵消特性,就可使原在1.3Pm段的零色散,移位到1.55pm段也構成零色散。因此,被命名為色散位移光纖(DSF:DispersionShifted Fiber)。
加大結構色散的方法,主要是在纖芯的折射率分布性能進行改善。
在光通信的長距離傳輸中,光纖色散為零是重要的,但不是唯一的。其它性能還有損耗小、接續容易、成纜化或工作中的特性變化小(包括彎曲、拉伸和環境變化影響)。DSF就是在設計中,綜合考慮這些因素。
十一 色散平坦光纖
色散移位光纖(DSF)是將單模光纖設計零色散位於1.55pm波段的光纖。而色散平坦光纖(DFF:Dispersion Flattened Fiber)卻是將從1.3Pm到1.55pm的較寬波段的色散,都能作到很低,幾乎達到零色散的光纖稱作DFF。由於DFF要作到1.3pm~1.55pm范圍的色散都減少。就需要對光纖的折射率分布進行復雜的設計。不過這種光纖對於波分復用(WDM)的線路卻是很適宜的。由於DFF光纖的工藝比較復雜,費用較貴。今後隨著產量的增加,價格也會降低。
十二 色散補償光纖
對於採用單模光纖的干線系統,由於多數是利用1.3pm波段色散為零的光纖構成的。可是,現在損耗最小的1.55pm,由於EDFA的實用化,如果能在1.3pm零色散的光纖上也能令1.55pm波長工作,將是非常有益的。
因為,在1.3Pm零色散的光纖中,1.55Pm波段的色散約有16ps/km/nm之多。
如果在此光纖線路中,插入一段與此色散符號相反的光纖,就可使整個光線路的
色散為零。為此目的所用的是光纖則稱作色散補償光纖(DCF:DisPersion Compe-nsation Fiber)。
DCF與標準的1.3pm零色散光纖相比,纖芯直徑更細,而且折射率差也較大。
DCF也是WDM光線路的重要組成部分。
十三 偏派保持光纖
在光纖中傳播的光波,因為具有電磁波的性質,所以,除了基本的光波單一
模式之外,實質上還存在著電磁場(TE、TM)分布的兩個正交模式。通常,由於
光纖截面的結構是圓對稱的,這兩個偏振模式的傳播常數相等,兩束偏振光互不
干涉。但實際上,光纖不是完全地圓對稱,例如有著彎曲部分,就會出現兩個偏
振模式之間的結合因素,在光軸上呈不規則分布。偏振光的這種變化造成的色散,稱之偏振模式色散(PMD)。對於現在以分配圖像為主的有線電視,影響尚不太大。但對於一些未來超寬頻有特殊要求的業務,如:①相干通信中採用外差檢波,要求光波偏振更穩定時;②光機器等對輸入輸出特性要求與偏振相關時;③在製作偏振保持光耦合器和偏振器或去偏振器等時;④製作利用光干涉的光纖敏感器等,凡要求偏振波保持恆定的情況下,對光纖經過改進使偏振狀態不變的光纖稱作偏振保持光纖(PMF:Polarization Maintaining fiber),也有稱此為固定偏振光纖的。
十四 雙折射光纖
雙折射光纖是指在單模光纖中,可以傳輸相互正交的兩個固有偏振模式的光
纖而言。因為,折射率隨偏報方向變異的現象稱為雙折射。在造成雙折射的方法
中。它又稱作PANDA光纖,即偏振保持與吸收減少光纖(Polarization-maintai-ning AND Absorption- recing fiber)。它是在纖芯的橫向兩則,設置熱膨脹系數大、截面是圓形的玻璃部分。在高溫的光纖拉絲過程中,這些部分收縮,其結果在纖芯y方向產生拉伸,同時又在x方向呈現壓縮應力。致使纖材出現光彈性效應,使折射率在X方向和y方向出現差異。依此原理達到偏振保持恆定。
十五 抗惡環境光纖
通信用光纖通常的工作環境溫度可在-40~+60℃之間,設計時也是以不受大量輻射線照射為前提的。相比之下,對於更低溫或更高溫以及能遭受高壓或外力影響、曝曬輻射線的惡劣環境下,也能工作的光纖則稱作抗惡環境光纖(Hard
Condition Resistant Fiber)。
一般為了對光纖表面進行機械保護,多塗覆一層塑料。可是隨著溫度升高,
塑料保護功能有所下降,致使使用溫度也有所限制。如果改用抗熱性塑料,如聚
四氟乙稀(Teflon)等樹脂,即可工作在300℃環境。也有在石英玻璃表面塗覆
鎳(Ni)和鋁(A1)等金屬的。這種光纖則稱為耐熱光纖(Heat Resistant Fib-
er)。
另外,當光纖受到輻射線的照射時,光損耗會增加。這是因為石英玻璃遇到
輻射線照射時,玻璃中會出現結構缺陷(也稱作色心:Colour Center),尤在
0.4~0.7pm波長時損耗增大。防止辦法是改用摻雜OH或F素的石英玻璃,就能抑
制因輻射線造成的損耗缺陷。這種光纖則稱作抗輻射光纖(Radiation Resista-
nt Fiber),多用於核發電站的監測用光纖維鏡等。
十六 密封塗層光纖
為了保持光纖的機械強度和損耗的長時間穩定,而在玻璃表面塗裝碳化硅
(SiC)、碳化鈦(TiC)、碳(C)等無機材料,用來防止從外部來的水和氫的
擴散所製造的光纖(HCF:HermeticallyCoated Fiber)。目前,通用的是在化
學氣相沉積(CVD)法生產過程中,用碳層高速堆積來實現充分密封效應。這種
碳塗覆光纖(CCF)能有效地截斷光纖與外界氫分子的侵入。據報道它在室溫的
氫氣環境中可維持20年不增加損耗。當然,它在防止水分侵入延緩機械強度的疲
勞進程,其疲勞系數(Fatigue Parameter)可達200以上。所以,HCF被應用於
嚴酷環境中要求可靠性高的系統,例如海底光纜就是一例。
十七 碳塗層光纖
在石英光纖的表面塗敷碳膜的光纖,稱之碳塗層光纖(CCF:Carbon Coated
Fiber)。其機理是利用碳素的緻密膜層,使光纖表面與外界隔離,以改善光纖
的機械疲勞損耗和氫分子的損耗增加。CCF是密封塗層光纖(HCF)的一種。
十八 金屬塗層光纖
金屬塗層光纖(Metal Coated Fiber)是在光纖的表面塗布Ni、Cu、A1等
金屬層的光纖。也有再在金屬層外被覆塑料的,目的在於提高抗熱性和可供通
電及焊接。它是抗惡環境性光纖之一,也可作為電子電路的部件用。
早期產品是在拉絲過程中,塗布熔解的金屬作成的。由於此法因被玻璃與
金屬的膨脹系數差異太大,會增微小彎曲損耗,實用化率不高。近期,由於在
玻璃光纖的表面採用低損耗的非電解鍍膜法的成功,使性能大有改善。
十九 摻稀土光纖
在光纖的纖芯中,摻雜如何(Er)、欽(Nd)、譜(Pr)等稀土族元素的
光纖。1985年英國的索斯安普頓(Sourthampton)大學的佩思(Payne)等首
先發現摻雜稀土元素的光纖(Rare Earth DoPed Fiber)有激光振盪和光放大
的現象。於是,從此揭開了慘餌等光放大的面紗,現在已經實用的1.55pmEDFA
就是利用摻餌的單模光纖,利用1.47pm的激光進行激勵,得到1.55pm光信號放
大的。另外,摻錯的氟化物光纖放大器(PDFA)正在開發中。
二十 喇曼光纖
喇曼效應是指往某物質中射人頻率f的單色光時,在散射光中會出現頻率f
之外的f±fR, f±2fR等頻率的散射光,對此現象稱喇曼效應。由於它是物質
的分子運動與格子運動之間的能量交換所產生的。當物質吸收能量時,光的振
動數變小,對此散射光稱斯托克斯(stokes)線。反之,從物質得到能量,而
振動數變大的散射光,則稱反斯托克斯線。於是振動數的偏差FR,反映了能級,
可顯示物質中固有的數值。
利用這種非線性媒體做成的光纖,稱作喇曼光纖(RF:Raman Fiber)。
為了將光封閉在細小的纖芯中,進行長距離傳播,就會出現光與物質的相互作
用效應,能使信號波形不畸變,實現長距離傳輸。
當輸入光增強時,就會獲得相乾的感應散射光。應用感應喇曼散射光的設
備有喇曼光纖激光器,可供作分光測量電源和光纖色散測試用電源。另外,感
應喇曼散射,在光纖的長距離通信中,正在研討作為光放大器的應用。
二十一 偏心光纖
標准光纖的纖芯是設置在包層中心的,纖芯與包層的截面形狀為同心圓型。
但因用途不同,也有將纖芯位置和纖芯形狀、包層形狀,作成不同狀態或將包
層穿孔形成異型結構的。相對於標准光纖,稱這些光纖叫異型光纖。
偏心光纖(Excentric Core Fiber),它是異型光纖的一種。其纖芯設置
在偏離中心且接近包層外線的偏心位置。由於纖芯靠近外表,部分光場會溢出
包層傳播(稱此為漸消彼,Evanescent Wave)。
因此,當光纖表面附著物質時,因物質的光學性質在光纖中傳播的光波受
到影響。如果附著物質的折射率較光纖高時,光波則往光纖外輻射。若附著物
質的折射率低於光纖折射率時,光波不能往外輻射,卻會受到物質吸收光波的
損耗。利用這一現象,就可檢測有無附著物質以及折射率的變化。
偏心光纖(ECF)主要用作檢測物質的光纖敏感器。與光時域反射計(OTDR)
的測試法組合一起,還可作分布敏感器用。
二十二 發光光纖
採用含有熒光物質製造的光纖。它是在受到輻射線、紫外線等光波照射時,
產生的熒光一部分,可經光纖閉合進行傳輸的光纖。
發光光纖(Luminescent Fiber)可以用於檢測輻射線和紫外線,以及進
行波長變換,或用作溫度敏感器、化學敏感器。在輻射線的檢測中也稱作閃光
光纖(Scintillation Fiber)。
發光光纖從熒光材料和摻雜的角度上,正在開發著塑料光纖。
二十三 多芯光纖
通常的光纖是由一個纖芯區和圍繞它的包層區構成的。但多芯光纖(Multi
Core Fiber)卻是一個共同的包層區中存在多個纖芯的。由於纖芯的相互接近
程度,可有兩種功能。
其一是纖芯間隔大,即不產生光耦會的結構。這種光纖,由於能提高傳輸
線路的單位面積的集成密度。在光通信中,可以作成具有多個纖芯的帶狀光纜,
而在非通信領域,作為光纖傳像束,有將纖芯作成成千上萬個的。
其二是使纖芯之間的距離靠近,能產生光波耦合作用。利用此原理正在開
發雙纖芯的敏感器或光迴路器件。
二十四 空心光纖
將光纖作成空心,形成圓筒狀空間,用於光傳輸的光纖,稱作空心光纖
(Hollow Fiber)。
空心光纖主要用於能量傳送,可供X射線、紫外線和遠紅外線光能傳輸。空
心光纖結構有兩種:一是將玻璃作成圓筒狀,其纖芯與包層原理與階躍型相同。
利用光在空氣與玻璃之間的全反射傳播。由於,光的大部分可在無損耗的空氣
中傳播,具有一定距離的傳播功能。二是使圓筒內面的反射率接近1,以減少反
射損耗。為了提高反射率,有在簡內設置電介質,使工作波長段損耗減少的。
例如可以作到波長10.6pm損耗達幾dB/m的。
『貳』 光纖為什麼摻Ge
Ge是化學元素鍺的意思。鍺作為一種稀散金屬,最初應用於半導體領域,製作晶體管等電子元件。70年代硅的崛起使鍺在電子工業領域的市場急劇萎縮。但同時鍺以其良好的紅外光學性能而逐漸進人紅外光學領域,並成為重要的軍用光學材料,一直到80年代末,該領域都是鍺的最大應用市場。而用於Pgr樹脂摻雜的二氧化鍺和光纖摻雜的四氯化鍺則在此後得到應用。隨著光纖通信的飛速發展,世界鍺的消費市場開始發生變化。光學用鍺趨於下降,而光纖用鍺則迅速上升,從而給鍺的生產供應帶來巨大變化。正光纖與鍺1.l光纖與多媒體通信隨著人類社會的不斷進步,信息的傳播成為物質文明高度發展的一個重要的標志。1970年美國康寧公司率先拉制出損耗為20dB/kin的光纖,成為世界上公認的第一根通信光纖,從此人類的通信技術進人光纖通信時代。隨著計算機及網路技術的成熟和不斷發展,以多媒體通信為主體的信息高速公路成為經濟發展的重要領域和先導。光纖具有頻帶寬、容量大\衰減小、抗輻射等優點而成為多媒體通信的唯一信息載體。
『叄』 光纖是什麼
光纖是光導纖維的簡寫,是一種利用光在玻璃或塑料製成的纖維中的全反射原理而達成的光傳導工具。前香港中文大學校長高錕和George A. Hockham首先提出光纖可以用於通訊傳輸的設想,高錕因此獲得2009年諾貝爾物理學獎。
微細的光纖封裝在塑料護套中,使得它能夠彎曲而不至於斷裂。通常,光纖的一端的發射裝置使用發光二極體(light emitting diode,LED)或一束激光將光脈沖傳送至光纖,光纖的另一端的接收裝置使用光敏元件檢測脈沖。
在日常生活中,由於光在光導纖維的傳導損耗比電在電線傳導的損耗低得多,光纖被用作長距離的信息傳遞。
通常光纖與光纜兩個名詞會被混淆。多數光纖在使用前必須由幾層保護結構包覆,包覆後的纜線即被稱為光纜。光纖外層的保護層和絕緣層可防止周圍環境對光纖的傷害,如水、火、電擊等。光纜分為:光纖,緩沖層及披覆。光纖和同軸電纜相似,只是沒有網狀屏蔽層。中心是光傳播的玻璃芯。
在多模光纖中,芯的直徑是50μm和62.5μm兩種, 大致與人的頭發的粗細相當。而單模光纖芯的直徑為8μm~10μm。芯外麵包圍著一層折射率比芯低的玻璃封套, 以使光線保持在芯內。再外面的是一層薄的塑料外套,用來保護封套。光纖通常被紮成束,外面有外殼保護。 纖芯通常是由石英玻璃製成的橫截面積很小的雙層同心圓柱體,它質地脆,易斷裂,因此需要外加一保護層
1.光是一種電磁波
可見光部分波長范圍是:390~760nm(納米)。大於760nm部分是紅外光,小於390nm部分是紫外光。光纖中應用的是:850nm,1310nm,1550nm三種。
2.光的折射,反射和全反射。
因光在不同物質中的傳播速度是不同的,所以光從一種物質射向另一種物質時,在兩種物質的交界面處會產生折射和反射。而且,折射光的角度會隨入射光的角度變化而變化。當入射光的角度達到或超過某一角度時,折射光會消失,入射光全部被反射回來,這就是光的全反射。不同的物質對相同波長光的折射角度是不同的(即不同的物質有不同的光折射率),相同的物質對不同波長光的折射角度也是不同。光纖通訊就是基於以上原理而形成的。
1.光纖結構:
光纖裸纖一般分為三層:中心高折射率玻璃芯(芯徑一般為50或62.5μm),中間為低折射率硅玻璃包層(直徑一般為125μm),最外是加強用的樹脂塗層。
光纖2.數值孔徑:
入射到光纖端面的光並不能全部被光纖所傳輸,只是在某個角度范圍內的入射光才可以。這個角度就稱為光纖的數值孔徑。光纖的數值孔徑大些對於光纖的對接是有利的。不同廠家生產的光纖的數值孔徑不同(AT&T CORNING)。
3.光纖的種類:
光纖的種類很多,根據用途不同,所需要的功能和性能也有所差異。但對於有線電視和通信用的光纖,其設計和製造的原則基本相同,諸如:①損耗小;②有一定帶寬且色散小;③接線容易;④易於成統;⑤可靠性高;⑥製造比較簡單;⑦價廉等。光纖的分類主要是從工作波長、折射率分布、傳輸模式、原材料和製造方法上作一歸納的,茲將各種分類舉例如下。
(1)工作波長:紫外光纖、可觀光纖、近紅外光纖、紅外光纖(0.85μm、1.3μm、1.55μm)。
(2)折射率分布:階躍(SI)型光纖、近階躍型光纖、漸變(GI)型光纖、其它(如三角型、W型、凹陷型等)。
(3)傳輸模式:單模光纖(含偏振保持光纖、非偏振保持光纖)、多模光纖。
(4)原材料:石英光纖、多成分玻璃光纖、塑料光纖、復合材料光纖(如塑料包層、液體纖芯等)、紅外材料等。按被覆材料還可分為無機材料(碳等)、金屬材料(銅、鎳等)和塑料等。
(5)製造方法:預塑有汽相軸向沉積(VAD)、化學汽相沉積(CVD)等,拉絲法有管律法(Rod intube)和雙坩鍋法等。
石英光纖
石英光纖(Silica Fiber)是以二氧化硅(SiO2)為主要原料,並按不同的摻雜量,來控制纖芯和包層的折射率分布的光纖。石英(玻璃)系列光纖,具有低耗、寬頻的特點,現在已廣泛應用於有線電視和通信系統。
石英玻璃光導纖維的優點是損耗低,當光波長為1.0~1.7μm(約1.4μm附近),損耗只有1dB/km,在1.55μm處最低,只有0.2dB/km。
摻氟光纖
摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為1.3μm波域的通信用光纖中,控制纖芯的摻雜物為二氧化鍺(GeO2),包層是用SiO2作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動因素的摻雜物,以少為佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。
石英光纖與其它原料的光纖相比,還具有從紫外線光到近紅外線光的透光廣譜,除通信用途之外,還可用於導光和圖像傳導等領域。
紅外光纖
作為光通信領域所開發的石英系列光纖的工作波長,盡管用在較短的傳輸距離,也只能用於2μm。為此,能在更長的紅外波長領域工作,所開發的光纖稱為紅外光纖。紅外光纖(Infrared Optical Fiber)主要用於光能傳送。例如有:溫度計量、熱圖像傳輸、激光手術刀醫療、熱能加工等等,普及率尚低。
復合光纖
復合光纖(Compound Fiber)是在SiO2原料中,再適當混合諸如氧化鈉(Na2O)、氧化硼(B2O3)、氧化鉀(K2O)等氧化物製作成多組分玻璃光纖,特點是多組分玻璃比石英玻璃的軟化點低且纖芯與包層的折射率差很大。主要用在醫療業務的光纖內窺鏡。
氟氯化物光纖
氟化物光纖氯化物光纖(Fluoride Fiber)是由氟化物玻璃作成的光纖。這種光纖原料又簡稱 ZBLAN(即將氟化誥(ZrF2)、氟化鋇(BaF2)、氟化鑭(LaF3)、氟化鋁(AlF3)、氟化鈉(NaF)等氯化物玻璃原料簡化成的縮語。主要工作在2~10μm波長的光傳輸業務。由於ZBLAN具有超低損耗光纖的可能性,正在進行著用於長距離通信光纖的可行性開發,例如:其理論上的最低損耗,在3μm波長時可達10-2~10-3dB/km,而石英光纖在1.55μm時卻在0.15-0.16dB/Km之間。目前,ZBLAN光纖由於難於降低散射損耗,只能用在2.4~2.7μm的溫敏器和熱圖像傳輸,尚未廣泛實用。最近,為了利用ZBLAN進行長距離傳輸,正在研製1.3μm的摻鐠光纖放大器(PDFA)。
塑包光纖
塑包光纖(Plastic Clad Fiber)是將高純度的石英玻璃作成纖芯,而將折射率比石英稍低的如硅膠等塑料作為包層的階躍型光纖。它與石英光纖相比較,具有纖芯租、數值孔徑(NA)高的特點。因此,易與發光二極體LED光源結合,損耗也較小。所以,非常適用於區域網(LAN)和近距離通信。
塑料光纖
這是將纖芯和包層都用塑料(聚合物)作成的光纖。早期產品主要用於裝飾和導光照明及近距離光鍵路的光通信中。原料主要是有機玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。損耗受到塑料固有的C-H結合結構制約,一般每km可達幾十dB。為了降低損耗正在開發應用氟索系列塑料。由於塑料光纖(Plastic Optical fiber)的纖芯直徑為1000μm,比單模石英光纖大100倍,接續簡單,而且易於彎曲施工容易。近年來,加上寬頻化的進度,作為漸變型(GI)折射率的多模塑料光纖的發展受到了社會的重視。最近,在汽車內部LAN中應用較快,未來在家庭LAN中也可能得到應用。
單模光纖
單模光纖這是指在工作波長中,只能傳輸一個傳播模式的光纖,通常簡稱為單模光纖(SMF:Single ModeFiber)。目前,在有線電視和光通信中,是應用最廣泛的光纖。由於,光纖的纖芯很細(約10μm)而且折射率呈階躍狀分布,當歸一化頻率V參數<2.4時,理論上,只能形成單模傳輸。另外,SMF沒有多模色散,不僅傳輸頻帶較多模光纖更寬,再加上SMF的材料色散和結構色散的相加抵消,其合成特性恰好形成零色散的特性,使傳輸頻帶更加拓寬。SMF中,因摻雜物不同與製造方式的差別有許多類型。凹陷型包層光纖(DePr-essed Clad Fiber),其包層形成兩重結構,鄰近纖芯的包層,較外倒包層的折射率還低。
多模光纖
多模光纖將光纖按工作波長以其傳播可能的模式為多個模式的光纖稱作多模光纖(MMF:MUlti ModeFiber)。纖芯直徑為50μm,由於傳輸模式可達幾百個,與SMF相比傳輸帶寬主要受模式色散支配。在歷史上曾用於有線電視和通信系統的短距離傳輸。自從出現SMF光纖後,似乎形成歷史產品。但實際上,由於MMF較SMF的芯徑大且與LED等光源結合容易,在眾多LAN中更有優勢。所以,在短距離通信領域中MMF仍在重新受到重視。MMF按折射率分布進行分類時,有:漸變(GI)型和階躍(SI)型兩種。GI型的折射率以纖芯中心為最高,沿向包層徐徐降低。由於SI型光波在光纖中的反射前進過程中,產生各個光路徑的時差,致使射出光波失真,色激較大。其結果是傳輸帶寬變窄,目前SI型MMF應用較少。
色散位移光纖
單模光纖的工作波長在1.3Pm時,模場直徑約9Pm,其傳輸損耗約0.3dB/km。此時,零色散波長恰好在1.3pm處。石英光纖中,從原材料上看1.55pm段的傳輸損耗最小(約0.2dB/km)。由於現在已經實用的摻鉺光纖放大器(EDFA)是工作在1.55pm波段的,如果在此波段也能實現零色散,就更有利於應用1.55Pm波段的長距離傳輸。於是,巧妙地利用光纖材料中的石英材料色散與纖芯結構色散的合成抵消特性,就可使原在1.3Pm段的零色散,移位到1.55pm段也構成零色散。因此,被命名為色散位移光纖(DSF:DispersionShifted Fiber)。加大結構色散的方法,主要是在纖芯的折射率分布性能進行改善。在光通信的長距離傳輸中,光纖色散為零是重要的,但不是唯一的。其它性能還有損耗小、接續容易、成纜化或工作中的特性變化小(包括彎曲、拉伸和環境變化影響)。DSF就是在設計中,綜合考慮這些因素。
十一 色散平坦光纖
色散移位光纖(DSF)是將單模光纖設計零色散位於1.55pm波段的光纖。而色散平坦光纖(DFF:Dispersion Flattened Fiber)卻是將從1.3Pm到1.55pm的較寬波段的色散,都能作到很低,幾乎達到零色散的光纖稱作DFF。由於DFF要作到1.3pm~1.55pm范圍的色散都減少。就需要對光纖的折射率分布進行復雜的設計。不過這種光纖對於波分復用(WDM)的線路卻是很適宜的。由於DFF光纖的工藝比較復雜,費用較貴。今後隨著產量的增加,價格也會降低。
十二 色散補償光纖
對於採用單模光纖的干線系統,由於多數是利用1.3pm波段色散為零的光纖構成的。可是,現在損耗最小的1.55pm,由於EDFA的實用化,如果能在1.3pm零色散的光纖上也能令1.55pm波長工作,將是非常有益的。因為,在1.3Pm零色散的光纖中,1.55Pm波段的色散約有16ps/km/nm之多。如果在此光纖線路中,插入一段與此色散符號相反的光纖,就可使整個光線路的色散為零。為此目的所用的是光纖則稱作色散補償光纖(DCF:DisPersion Compe-nsation Fiber)。DCF與標準的1.3pm零色散光纖相比,纖芯直徑更細,而且折射率差也較大。DCF也是WDM光線路的重要組成部分。
十三 偏振保持光纖
在光纖中傳播的光波,因為具有電磁波的性質,所以,除了基本的光波單一模式之外,實質上還存在著電磁場(TE、TM)分布的兩個正交模式。通常,由於光纖截面的結構是圓對稱的,這兩個偏振模式的傳播常數相等,兩束偏振光互不幹涉,但實際上,光纖不是完全地圓對稱,例如有著彎曲部分,就會出現兩個偏振模式之間的結合因素,在光軸上呈不規則分布。偏振光的這種變化造成的色散,稱之偏振模式色散(PMD)。對於現在以分配圖像為主的有線電視,影響尚不太大,但對於一些未來超寬頻有特殊要求的業務,如:
①相干通信中採用外差檢波,要求光波偏振更穩定時;
②光機器等對輸入輸出特性要求與偏振相關時;
③在製作偏振保持光耦合器和偏振器或去偏振器等時;
④製作利用光干涉的光纖敏感器等,
凡要求偏振波保持恆定的情況下,對光纖經過改進使偏振狀態不變的光纖稱作偏振保持光纖(PMF:Polarization Maintaining fiber),或稱其為固定偏振光纖。
十四 雙折射光纖
雙折射光纖是指在單模光纖中,可以傳輸相互正交的兩個固有偏振模式的光纖。折射率隨偏報方向變異的現象稱為雙折射。它又稱作PANDA光纖,即偏振保持與吸收減少光纖(Polarization-maintai-ning AND Absorption- recing fiber)。它是在纖芯的橫向兩則,設置熱膨脹系數大、截面是圓形的玻璃部分。在高溫的光纖拉絲過程中,這些部分收縮,其結果在纖芯y方向產生拉伸,同時又在x方向呈現壓縮應力。致使纖材出現光彈性效應,使折射率在X方向和y方向出現差異。依此原理達到偏振保持恆定的效果。
十五 抗惡環境光纖
通信用光纖通常的工作環境溫度可在-40~+60℃之間,設計時也是以不受大量輻射線照射為前提的。相比之下,對於更低溫或更高溫以及能在遭受高壓或外力影響、曝曬輻射線的惡劣環境下,也能工作的光纖則稱作抗惡環境光纖(Hard Condition Resistant Fiber)。一般為了對光纖表面進行機械保護,多塗覆一層塑料。可是隨著溫度升高,塑料保護功能有所下降,致使使用溫度也有所限制。如果改用抗熱性塑料,如聚四氟乙稀(Teflon)等樹脂,即可工作在300℃環境。也有在石英玻璃表面塗覆鎳(Ni)和鋁(Al)等金屬的。這種光纖則稱為耐熱光纖(Heat Resistant Fiber)。另外,當光纖受到輻射線的照射時,光損耗會增加。這是因為石英玻璃遇到輻射線照射時,玻璃中會出現結構缺陷(也稱作色心:Colour Center),尤在0.4~0.7pm波長時損耗增大。防止辦法是改用摻雜OH或F素的石英玻璃,就能抑制因輻射線造成的損耗缺陷。這種光纖則稱作抗輻射光纖(Radiation Resistant Fiber),多用於核發電站的監測用光纖維鏡等。
十六 密封塗層光纖
為了保持光纖的機械強度和損耗的長時間穩定,而在玻璃表面塗裝碳化硅(SiC)、碳化鈦(TiC)、碳(C)等無機材料,用來防止從外部來的水和氫的擴散所製造的光纖(HCFHermeticallyCoated Fiber)。目前,通用的是在化學氣相沉積(CVD)法生產過程中,用碳層高速堆積來實現充分密封效應。這種 碳塗覆光纖(CCF)能有效地截斷光纖與外界氫分子的侵入。據報道它在室溫的氫氣環境中可維持20年不增加損耗。當然,它在防止水分侵入,延緩機械強度的疲勞進程中,其疲勞系數(Fatigue Parameter)可達200以上。所以,HCF被應用於嚴酷環境中要求可靠性高的系統,例如海底光纜就是一例。
十七 碳塗層光纖
在石英光纖的表面塗敷碳膜的光纖,稱之碳塗層光纖(CCF:Carbon CoatedFiber)。其機理是利用碳素的緻密膜層,使光纖表面與外界隔離,以改善光纖的機械疲勞損耗和氫分子的損耗增加。CCF是密封塗層光纖(HCF)的一種。
十八 金屬塗層光纖
金屬塗層光纖(Metal Coated Fiber)是在光纖的表面塗布Ni、Cu、Al等金屬層的光纖。也有再在金屬層外被覆塑料的,目的在於提高抗熱性和可供通電及焊接。它是抗惡環境性光纖之一,也可作為電子電路的部件用。 早期產品是在拉絲過程中,塗布熔解的金屬作成的。由於此法因被玻璃與金屬的膨脹系數差異太大,會增微小彎曲損耗,實用化率不高。近期,由於在玻璃光纖的表面採用低損耗的非電解鍍膜法的成功,使性能大有改善。
十九 摻稀土光纖
在光纖的纖芯中,摻雜如何(Er)、欽(Nd)、譜(Pr)等稀土族元素的光纖。1985年英國的索斯安普頓(Sourthampton)大學的佩思(Payne)等首先發現摻雜稀土元素的光纖(Rare Earth DoPed Fiber)有激光振盪和光放大的現象。於是,從此揭開了慘餌等光放大的面紗,現在已經實用的1.55pmEDFA就是利用摻餌的單模光纖,利用1.47pm的激光進行激勵,得到1.55pm光信號放大的。另外,摻錯的氟化物光纖放大器(PDFA)正在開發中。
二十 喇曼光纖
喇曼效應是指往某物質中射人頻率f的單色光時,在散射光中會出現頻率f之外的f±fR, f±2fR等頻率的散射光,對此現象稱喇曼效應。由於它是物質的分子運動與格子運動之間的能量交換所產生的。當物質吸收能量時,光的振動數變小,對此散射光稱斯托克斯(stokes)線。反之,從物質得到能量,而振動數變大的散射光,則稱反斯托克斯線。於是振動數的偏差FR,反映了能級,可顯示物質中固有的數值。 利用這種非線性媒體做成的光纖,稱作喇曼光纖(RF:Raman Fiber)。為了將光封閉在細小的纖芯中,進行長距離傳播,就會出現光與物質的相互作用效應,能使信號波形不畸變,實現長距離傳輸。 當輸入光增強時,就會獲得相乾的感應散射光。應用感應喇曼散射光的設備有喇曼光纖激光器,可供作分光測量電源和光纖色散測試用電源。另外,感應喇曼散射,在光纖的長距離通信中,正在研討作為光放大器的應用。
二十一 偏心光纖
標准光纖的纖芯是設置在包層中心的,纖芯與包層的截面形狀為同心圓型。但因用途不同,也有將纖芯位置和纖芯形狀、包層形狀,作成不同狀態或將包層穿孔形成異型結構的。相對於標准光纖,稱這些光纖叫異型光纖。 偏心光纖(Excentric Core Fiber),它是異型光纖的一種。其纖芯設置在偏離中心且接近包層外線的偏心位置。由於纖芯靠近外表,部分光場會溢出包層傳播(稱此為漸消彼,Evanescent Wave)。利用這一現象,就可檢測有無附著物質以及折射率的變化。 偏心光纖(ECF)主要用作檢測物質的光纖敏感器。與光時域反射計(OTDR)的測試法組合一起,還可作分布敏感器用。
二十二 發光光纖
採用含有熒光物質製造的光纖。它是在受到輻射線、紫外線等光波照射時,產生的熒光一部分,可經光纖閉合進行傳輸的光纖。 發光光纖(Luminescent Fiber)可以用於檢測輻射線和紫外線,以及進行波長變換,或用作溫度敏感器、化學敏感器。在輻射線的檢測中也稱作閃光光纖(Scintillation Fiber)。 發光光纖從熒光材料和摻雜的角度上,正在開發著塑料光纖。
二十三 多芯光纖
通常的光纖是由一個纖芯區和圍繞它的包層區構成的。但多芯光纖(Multi Core Fiber)卻是一個共同的包層區中存在多個纖芯的。由於纖芯的相互接近程度,可有兩種功能。 其一是纖芯間隔大,即不產生光耦會的結構。這種光纖,由於能提高傳輸線路的單位面積的集成密度。在光通信中,可以作成具有多個纖芯的帶狀光纜,而在非通信領域,作為光纖傳像束,有將纖芯作成成千上萬個的。 其二是使纖芯之間的距離靠近,能產生光波耦合作用。利用此原理正在開發雙纖芯的敏感器或光迴路器件。
二十四 空心光纖
將光纖作成空心,形成圓筒狀空間,用於光傳輸的光纖,稱作空心光纖(Hollow Fiber)。 空心光纖主要用於能量傳送,可供X射線、紫外線和遠紅外線光能傳輸。空心光纖結構有兩種:一是將玻璃作成圓筒狀,其纖芯與包層原理與階躍型相同。利用光在空氣與玻璃之間的全反射傳播。由於,光的大部分可在無損耗的空氣中傳播,具有一定距離的傳播功能。二是使圓筒內面的反射率接近1,以減少反射損耗。為了提高反射率,有在簡內設置電介質,使工作波長段損耗減少的。例如可以作到波長10.6pm損耗達幾dB/m的。
二十五 高分子光導纖維
按材質分,有無機光導纖維和高分子光導纖維,目前在工業上大量應用的是前者。無機光導纖維材料又分為單組分和多組分兩類。單組分即石英,主要原料為四氯化硅、三氯氧磷和三溴化硼等。其純度要求銅、鐵、鈷、鎳、錳、鉻、釩等過渡金屬離子雜質含量低於10ppb。除此之外,OH-離子要求低於10ppb。石英纖維已被廣泛使用。多組分的原料較多,主要有二氧化硅、三氧化二硼、硝酸鈉、氧化鉈等。這種材料尚未普及。高分子光導纖維是以透明聚合物製得的光導纖維,由纖維芯材和包皮鞘材組成。芯材為高純度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽絲製得的纖維,外層為含氟聚合物或有機硅聚合物等。
高分子光導纖維的光損耗較高,1982年,日本電信電報公司利用氘化甲基丙烯酸甲酯聚合抽絲作芯材,光損耗率降低到20dB/km。但高分子光導纖維的特點是能制大尺寸,大數值孔徑的光導纖維,光源耦合效率高,撓曲性好,微彎曲不影響導光能力,配列、粘接容易,便於使用,成本低廉。但光損耗大,只能短距離應用。光損耗在10~100dB/km的光導纖維,可傳輸幾百米。
二十六 保偏光纖
保偏光纖:保偏光纖傳輸線偏振光,廣泛用於航天、航空、航海、工業製造技術及通信等國民經濟的各個領域。在以光學相干檢測為基礎的干涉型光纖感測器中,使用保偏光纖能夠保證線偏振方向不變,提高相干信躁比,以實現對物理量的高精度測量。保偏光纖作為一種特種光纖,主要應用於光纖陀螺,光纖水聽器等感測器和DWDM、EDFA等光纖通信系統。由於光纖陀螺及光纖水聽器等可用於軍用慣導和聲吶,屬於高新科技產品,而保偏光纖又是其核心部件,因而保偏光纖一直被西方發達國家列入對我禁運的清單。保偏光纖在拉制過程中,由於光纖內部產生的結構缺陷會造成保偏性能的下降,即當線偏振光沿光纖的一個特徵軸傳輸時,部分光信號會耦合進入另一個與之垂直的特徵軸,最終造成出射偏振光信號偏振消光比的下降. 這種缺陷就是影響光纖內的雙折射效應. 保偏光纖中,雙折射效應越強,波長越短,保持傳輸光偏振態越好。
『肆』 光纖的化學成分是什麼
光纖有很多種,成分也不同。
一 石英光纖
石英光纖(Silica Fiber)是以二氧化硅(SiO2)為主要原料,並按不同的摻雜量,來控制纖芯和包層的折射率分布的光纖。石英(玻璃)系列光纖,具有低耗、寬頻的特點,已廣泛應用於有線電視和通信系統。
石英玻璃光導纖維的優點是損耗低,當光波長為1.0~1.7μm(約1.4μm附近),損耗只有1dB/km,在1.55μm處最低,只有0.2dB/km。
二 摻氟光纖
摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為1.3μm波域的通信用光纖中,控制纖芯的摻雜物為二氧化鍺(GeO2),包層是用SiO2作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動因素的摻雜物,以少為佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。
石英光纖與其它原料的光纖相比,還具有從紫外線光到近紅外線光的透光廣譜,除通信用途之外,還可用於導光和圖像傳導等領域。
三 紅外光纖
作為光通信領域所開發的石英系列光纖的工作波長,盡管用在較短的傳輸距離,也只能用於2μm。為此,能在更長的紅外波長領域工作,所開發的光纖稱為紅外光纖。紅外光纖(Infrared Optical Fiber)主要用於光能傳送。例如有:溫度計量、熱圖像傳輸、激光手術刀醫療、熱能加工等等,普及率尚低。
四 復合光纖
復合光纖(Compound Fiber)是在SiO2原料中,再適當混合諸如氧化鈉(Na2O)、氧化硼(B2O3)、氧化鉀(K2O)等氧化物製作成多組分玻璃光纖,特點是多組分玻璃比石英玻璃的軟化點低且纖芯與包層的折射率差很大。主要用在醫療業務的光纖內窺鏡。
五 氟氯化物光纖
氟化物光纖氯化物光纖(Fluoride Fiber)是由氟化物玻璃作成的光纖。這種光纖原料又簡稱 ZBLAN(即將氟化鋯(ZrF2)、氟化鋇(BaF2)、氟化鑭(LaF3)、氟化鋁(AlF3)、氟化鈉(NaF)等氯化物玻璃原料簡化成的縮語。主要工作在2~10μm波長的光傳輸業務。由於ZBLAN具有超低損耗光纖的可能性,正在進行著用於長距離通信光纖的可行性開發,例如:其理論上的最低損耗,在3μm波長時可達10-2~10-3dB/km,而石英光纖在1.55μm時卻在0.15-0.16dB/Km之間。ZBLAN光纖由於難於降低散射損耗,只能用在2.4~2.7μm的溫敏器和熱圖像傳輸,尚未廣泛實用。最近,為了利用ZBLAN進行長距離傳輸,正在研製1.3μm的摻鐠光纖放大器(PDFA)。
六 塑包光纖
塑包光纖(Plastic Clad Fiber)是將高純度的石英玻璃作成纖芯,而將折射率比石英稍低的如硅膠等塑料作為包層的階躍型光纖。它與石英光纖相比較,具有纖芯租、數值孔徑(NA)高的特點。因此,易與發光二極體LED光源結合,損耗也較小。所以,非常適用於區域網(LAN)和近距離通信。
七 塑料光纖
這是將纖芯和包層都用塑料(聚合物)作成的光纖。早期產品主要用於裝飾和導光照明及近距離光鍵路的光通信中。原料主要是有機玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。損耗受到塑料固有的C-H結合結構制約,一般每km可達幾十dB。為了降低損耗正在開發應用氟索系列塑料。由於塑料光纖(Plastic Optical fiber)的纖芯直徑為1000μm,比單模石英光纖大100倍,接續簡單,而且易於彎曲施工容易。近年來,加上寬頻化的進度,作為漸變型(GI)折射率的多模塑料光纖的發展受到了社會的重視。最近,在汽車內部LAN中應用較快,未來在家庭LAN中也可能得到應用。
『伍』 摻稀土元素光纖定義是什麼
在眾多光纖感測器和光纖探測器中 ,一般都需要時間相乾性低的寬頻光源〔1〕。目前商用的寬頻光源多為超發光二極體 (SLD) ,但SLD的壽命較短、波長穩定性差、輸出功率低 ,並且由於空間相乾性差 ,與單模光纖的耦合也受到了限制〔2〕。摻稀土元素光纖技術的日益成熟 ,以及泵浦機制的快速發展 ,為人們提供了一種方便可靠的寬頻光纖光源。與SLD相比 ,摻稀土元素光纖中的放大的自發輻射 (ASE)具有溫度穩定性強、熒光譜線寬、輸出功率高 ,使用壽命長等特點 ,在光纖感測系統 (如光纖陀螺儀 )和某些信號處理、光學層析和醫用光學等領域有哦。從理論和實驗上分析了摻稀土元素光纖激光器的偏振和模式特性,指出其偏振特性對該光纖的感測應用很有用。從理論上分析其偏振模式。從實驗上測出了其輸出頻譜。介紹了這種光纖激光器的主要應用,例如可以作為壓敏感測元件。 簡介:1794年芬蘭化學家加多林(J.Gadolin)發現第一個稀土元素釔之後,吸引了許多化學家對「釔土」進行研究,經過了近50年的漫長時間,瑞典化學家莫桑德(K. G.Mosander,曾經發現鈰的伯采利烏斯的學生)經過堅持不懈地努力,終於在1843年破解了「釔土」的秘密,他發現原來當初人類找到的第一個稀土「釔」並非是單純的一種稀土,而從中分離出了三種稀土元素:釔(Y)、鋱(Tb)和鉺(Er)。為了紀念釔礦石發現地——斯德哥爾摩附近那個名叫伊特比(Yteerby)的小村,莫桑德截取了字母Y(已用於給釔命名)之後的兩組字母分別把鋱命名為Terbium,把鉺命名為Erbium。 鉺在地殼中的豐度為3.8ppm,僅相當於釹的1/10,本著「物以稀為貴」的原則,也應算作稀土中的「貴族」。但在重稀土中他的豐度僅次於釔和鏑,甚至超過輕稀土中的銪(2.1ppm),也算是重稀土中比較富存的元素。鉺除了具有稀土元素共有的化學活潑性外,它的光學特性非常突出,為其在光電子材料和器件中的應用提供了十分有利的條件。 目前鉺最突出的用途是製造摻鉺光纖放大器(Erbium Dopant Fiber Amplifier,簡稱EDFA)。摻餌光纖放大器(EDFA)是1985年英國南安普頓大學首先研製成功的,它是光纖通信中最偉大的發明之一,甚至可以說是當今長距離信息高速公路的「加油站」。摻餌光纖是在石英光纖中摻入少量稀土元素鉺離子(Er3+),它是放大器的核心。摻鉺光纖放大光信號的原理是:當Er3+受到波長980nm或1480nm的光激發吸收泵浦光的能量後,由基態躍遷到高能級的泵浦態。由於粒子在泵浦態的壽命很短,很快以非輻射的方式由泵浦態馳豫到亞穩態,粒子在該能帶有較長的壽命,逐漸積累。當有1550nm信號光通過時,亞穩態的Er3+離子以受激輻射的方式躍遷到基態,也正好發射出1550nm波長的光。這種從高能態躍迂至基態時發射的光補充了衰減損失的信號光,從而實現了信號光在光纖傳播過程中隨著衰減又不間斷地被放大。將鉺摻入普通石英光纖,再配以980納米或1480納米兩種波長的半導體激光器,就基本構成了直接放大1550nm光信號的放大器。石英光纖可傳送各種不同波長的光,但光衰率不一樣,1550nm頻帶的光在石英光纖中傳輸時光衰減率最低(僅為0.15分貝/公里),衰減率幾乎是下限極限。因此,光纖通信以1550nm波長的光作信號光時,光的損失最小。所以,光纖中只要摻雜幾十至幾百ppm的鉺,就能夠起到補償通訊系統中光損耗的作用。摻鉺光纖放大器就如同一個光的「泵站」,使光信號一站一站毫不減弱地傳遞下去,從而順暢地開通了現代長距離大容量高速光纖通訊的技術通道。從20世紀80年代後期開始,摻鉺光纖放大器的研究工作不斷取得重大突破。使光纖傳輸的距離越來越長,並且開創了波分復用(WDM)技術。波分復用是指在一根光纖上使用不同的波長同時傳送多路光波信號的一種技術。這極大地增加了光纖通信的容量,已成為當前光纖通信中應用最廣的光放大器件。由於摻鉺光纖放大器具有增益高、頻帶寬、雜訊低、效率高,連接損耗低,偏振不靈敏等特點,近年來得到了飛速發展,成為光放大器研究發展的主要方向,極大地推動了光纖通信技術的發展。 摻鉺光纖放大器問世後短短幾年就迅速走向實用化,並在越洋長途光通信系統中得到了應用。在1990年到1992年不到兩年的時間里光纖系統的容量增加了整整一個數量級,而在此之前為達到相同的增長卻花費了整整8年時間。這充分顯示出EDFA的巨大作用,為光纖通信展現了無限廣闊的發展前景。摻鉺光纖放大器的出現和應用改變了光纖通信發展的格局,目前它已成為光纖通信、有線電視(CATV)光信息網路系統中的關鍵器件之一。還研製出一種含有鉺離子Er+3和鐠離子Pr+3兩中稀土離子的光纖放大器用玻璃光纖,該光纖可在1300 nm和1550 nm波長下使用。與僅含其中一種稀土離子的光纖放大器相比較,可以提高光纖放大器的光放大效率。目前還研製出高增益、低損耗、高度透明的Er3+全氟稀土聚合物材料,它是將硅玻璃氟化,其損耗小於5dB/km,可用於通訊網路系統中光纖和波導放大器。這些高度氟化的玻璃具有比I型和II型硅玻璃有更寬的Er3+發射寬度,從而提高了多信道放大器性能。我國研製的摻鉺光纖和鉺鐿共摻光纖在各項性能指標和產品可靠性方面已達到國內外同類產品的先進水平。 摻鉺光纖放大器屬於激光相關產品,出口到北美、歐洲等國需要通過FDA(美國食品和葯物管理局)的輻射安全試驗認證。我國武漢光迅公司作為我國生產摻鉺光纖放大器的主要開發商,已成功取得FDA的激光輻射安全認證,有了產品出口的「安全通行證」。 鉺的另一個應用熱點是激光,尤其是用作醫用激光材料。鉺激光是一種固體脈沖激光,波長為2940nm,能被人體組織中的水分子強烈吸收,從而用較小的能量獲得較大的效果,可以非常精確地切割、磨削和切除軟組織。鉺激光治療儀特別適用於激光美容,由於皮膚組織中的水分對波長2940 nm的鉺激光的吸收比對波長1060 nm CO2激光的吸收大十多倍,對周圍組織的損傷更小。鉺激光「磨皮換膚術」作為當今高科技美容術,比用其他種類激光效果好,更比果酸脫皮好得多,它不影響皮膚正常的外觀顏色和厚度,可以准確控制磨皮的多少和深淺。激光產生的熱能還可以封閉血管,傷口不易感染,痊癒快。鉺激光現已成為祛斑除皺,磨去疤痕,嫩膚美容醫學的熱門,尤其適合於臉部、頸部、手部的皺紋去除。同時也適用於輕度增生性疤痕、扁平疣、痤瘡等,對老年斑等皮膚色素性疾病和毛發移植亦有理想的療效。他可以使術後色素沉著被控制在最小程度,尤其適合於東方和膚色較黑人種。在把鉺激光用於治療打鼾,美白牙齒等方面也取得了不錯的效果。鉺激光的最大好處是不會留下疤痕,一般手術僅需要幾分鍾,手術安全可靠,副作用少、又不需要特殊護理。鉺YAG激光還被用做白內障摘除。因為白內障晶體的主要成分是水,鉺激光能量低,易被水吸收,將是一種很有發展前景的摘除白內障的手術方法。鉺激光治療儀正為激光外科開辟出越來越廣闊的應用領域。 摻鉺激光晶體能輸出1730nm激光和1550nm激光,對人的眼睛安全,大氣傳輸性能也較好,對戰場的硝煙穿透能力較強,保密性好,不易被敵人探測,照射軍事目標的對比度較大,可以製成軍事上使用的對人眼安全的攜帶型激光測距儀。鉺還被用作紅外光變可見光的激光顯示材料:如NaYF4:Yb3+,Er3+和 BaYF5:Yb3+,Er3+,可以把釹激光器發射的人眼看不見的1060mm的激光轉換為可見光,因而可作為紅外激光的顯示,調試和準直。這類上轉換材料已成功地用於夜視儀。此外,還開發出氟釔鋰摻鉺(LiYF4:Er)綠光等上轉換激光材料。 Er3+加入到玻璃中可製成激光玻璃,它是目前輸出脈沖能量最大,輸出功率最高的固體激光材料。鉺激光玻璃產生1540mm的鉺激光處於人眼安全波段。可以應用於通訊和測距儀等方面。我國已利用自己制備的Er3+,Yb3+共摻磷酸鹽玻璃實現了穩定的連續激光輸出。 Er3+還可用作稀土上轉換激光材料的激活離子。鉺激光上轉換材料又分為單晶(氟化物、含氧鹽)和玻璃(光纖)兩類,如摻鉺的鋁酸釔(YAP:Er3+)晶體和摻雜Er3+的ZBLAN氟化物(ZrF4-BaF2-LaF3-AlF3-NaF)玻璃光纖等,現在均已經實用化。BaYF5:Yb3+,Er3+可將紅外線轉成可見光,這種多光子上轉換發光材料已成功地用於夜視儀。 氧化鉺為玫瑰紅色,可應用於眼鏡片玻璃、結晶玻璃的脫色和著色,也可作為陶瓷著色劑。它能使玻璃和陶瓷呈現晶瑩鮮亮的桃紅色,用於美術工藝品,顯示出獨特的光彩和色調。 附錄:稀土元素家族系列檔案——鉺 鉺元素符號Er 英文名稱Erbium 原子序數68 相對原子質量(12C = 12.0000) 167.26 發現年代 1842年 發現人 C.G. Mosander(瑞典)原 子 結 構 原子半徑: 2.45 離子半徑: 0.881 共價半徑: 1.57 氧化態: 3 原子體積/cm3/mol: 18.4 電子構型: 1s2 2s2p6 3s2p6d10 4s2p6d10f12 5s2p6 6s2 物理性質狀態:銀灰色金屬。 熔點(℃):1522 沸點(℃): 2863 比 熱(J/gK):0.17 密度 (g/cc,300K):9.07 熔化熱(KJ/mol):19.9 蒸發熱(KJ/mol):261 導電率(106/cm ): 0.0117 導熱系數(W/cm K ):0.143 地質 數據地殼豐度(ppm):3.8 太平洋(ppm) 大西洋(ppm)表面: 5.9 × 10-7深處: : 8.6 × 10-7主要產地 離子型稀土礦 中國江西、廣東、福建、湖南、廣西等 磷釔礦 馬來西亞、中國廣西、廣東獨居石(Monazite ) (CeLaTh)PO4 澳大利亞海岸海濱、印度海濱 中國廣東和台灣海濱 鈰鈮鈣鈦礦俄羅斯托姆托爾碳酸岩風化殼稀土礦 稀土配分 Er% 中國離子型稀土礦 國外稀土礦 江西龍南 江西信豐 江西尋烏 馬來西亞 磷釔礦澳大利亞 獨居石 俄羅斯鈰鈮鈣鈦礦 4.26 2.48 0.88 6.52 0.21 0.80 應用領域:金屬、合金釹鐵硼永磁合金添加劑、超磁致伸縮材料料添加劑等 單一氧化物及化合物光纖通訊放大器,激光晶體,激光玻璃、長余輝熒光粉激活劑,介電陶瓷電容器,玻璃陶瓷著色等
『陸』 一條5公里單模24芯光纖在2.5公里處添加設備 用什麼材料
單模光纖
傳輸5公里距離可以直接達到,不需要添加什麼設備,只要保證各個熔接點符合
光衰
標准就行。
『柒』 光纖的纖芯中常摻入什麼來提高折射率謝謝了,在考試,急求解!!!
石英(玻璃)系列光纖,具有低耗、寬頻的特點,現在已廣泛應用於有線電視和通信系統。摻氟光纖(Fluorine Doped Fiber)為石英光纖的典型產品之一。通常,作為1.3Pm波域的通信用光纖中,控制纖芯的摻雜物為二氧化鍺(GeO2),包層是用SiO炸作成的。但接氟光纖的纖芯,大多使用SiO2,而在包層中卻是摻入氟素的。由於,瑞利散射損耗是因折射率的變動而引起的光散射現象。所以,希望形成折射率變動因素的摻雜物,以少為佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用於包層的摻雜。由於摻氟光纖中,纖芯並不含有影響折射率的氟素摻雜物。由於它的瑞利散射很小,而且損耗也接近理論的最低值。所以多用於長距離的光信號傳輸。石英光纖(Silica Fiber)與其它原料的光纖相比,還具有從紫外線光到近紅外線光的透光廣譜,除通信用途之外,還可用於導光和傳導圖像等領域。
『捌』 光纖中為什麼要加凡士林
光纖是多個管狀的線路套裝上去的 平時使用時各個管之間會經常產生摩擦 加入凡士林是為了減少摩擦或者說是加滑的作用
當然 凡士林也有吸水的功效 所以也有防水的作用
『玖』 普通光纖摻什麼元素
目前使用的光纖大多為石英光纖。它以純凈的二氧化硅材料為主,為了改變折射率,中間摻以合適的雜質。摻鍺和磷使折射率增加,摻硼和氟使折射率降低。
『拾』 光纖同軸電纜是什麼,是銅線加光纖
光纜和同軸電纜是兩種不同的產品。簡單的說同軸電纜和光纜最大區別就在於傳輸速度,光纜比同軸電纜快很多,當然光纜是目前傳輸速度最快的一種介質.
同軸電纜由一空心金屬圓管(外導體)和一根硬銅導線(內導體)組成。內導體位於金屬圓管中 心,內外導體間用聚乙烯塑料墊片絕緣。在區域網中使用的同軸電纜共有75Ω、50Ω 和93Ω三種。RG59型75Ω電纜是共用天線電視系統(CATV)採用的標准電纜,它常用於傳輸頻 分多路FDM方式產生的模擬信號,頻率可達300~400MHz,稱作寬頻傳輸,也可用於傳輸數字信號。50Ω同軸電纜分粗纜(RG-8型或RG-11型)和細纜(RG-58型)兩種。粗纜抗干擾性能 好,傳輸距離較遠,細纜價格低,傳輸距離較近,傳輸速率一般為10Mbps,適用於以及網。 RG-62型93Ω電纜是Arcnet網採用的同軸電纜,通常只適用於基帶傳輸,傳輸速率為2~20M bps。
光纜是光纖電纜的簡稱,是傳送光信號的介質,它由纖芯、包層和外部一層的增強強度的保護層構成。纖芯是採用二氧化硅摻以鍺、磷等材料製成,呈圓柱形。外麵包層用純二氧化硅製成,它將光信號折射到纖芯中。光纖分單模和多模兩種,單模只提供一條光通路,多模有多條光通路,單模光纖容量大,價格較貴,目前單模光纖芯連包層尺寸約8.3μm/125μm, 多模纖芯常用的為62.5μm/125μm。光纖只能作單向傳輸,如需雙向通信,則應成對使用 。國內的光纜服務速度已經達到100Mbps,而服務商表示最終將把該數字提高到1Gbps到10Gbps