1. 電解法處理回收貴金屬的工藝流程圖。
一、項目的背景
貴金屬即金Au、銀Ag、鉑Pt、鈀Pd、鍶、鋨Os、銠Rh和釕Ru 八種金屬。由於這些金屬在地殼中含量稀少,提取困難,但性能優良,應用廣泛,價格昂貴而得名貴金屬。除人們熟知金Au、銀Ag外,其他六種金屬元素稱為鉑族元素(鉑族金屬)。
貴金屬在地殼中的豐度極低,除銀有品位較高的礦藏外,50%以上的金和90%以上的鉑族金屬均分散共生在銅、鉛、鋅和鎳等重有色金屬硫化礦中,其含量極微、品位低至PPm級甚至更低。
隨著人類社會的發展,礦物原料應用范圍日益擴大,人類對礦產的需求量也不斷增加,因此,需要最大限度地提高礦產資源的利用率和金屬循環使用率。由於貴金屬的化學穩定性很高,為它們的再生回收利用提供了條件,加之其本身稀貴,再生回收有利可圖。
二、貴金屬回收利用概況
由於貴金屬在使用過程中本身沒有損耗,且在部件中的含量比原礦要高出許多,各國都把含貴金屬的廢料視作不可多得的貴金屬原料,並給以足夠的重視。且紛紛加以立法、並成立專業貴金屬回收公司。
日本20世紀70年代就頒布了固體廢物處理和清除法律,成立回收協會,至目前已從含貴金屬的廢棄物中回收有價金屬20幾種。
美國回收貴金屬已有幾十年的歷史,形成回收利用產業,成立專門的公司,如阿邁克斯金屬公司和恩格哈特公司,1985年就回收5噸鉑族金屬,1995年回收的貴金屬增加到12.4~15.5噸。
德國1972年頒布了廢棄管理法,規定廢棄物必須作為原料再循環使用,要求提高廢棄物對環境的無害程度。德國有著名的迪高沙公司和暗包岩原料公司都建有專門的裝置回收處理含貴金屬的廢料。
英國有全球性金屬再生公司—阿邁隆金屬公司,專門回收處理各種含貴金屬廢料,回收的鉑、鈀、銀的富集物就有上千噸。
我國的各類電子設備、儀器儀表、電子元器件和家用電器等隨著經濟發展和生活水平的提高,淘汰率迅速提高,形成大量的廢棄物垃圾,不僅浪費了資源和能源,且造成嚴重的環境影響。隨著時間的延續,更新的數量還會增加。如果作為城市垃圾埋掉、燒掉,必將造成空氣、土壤和水體的嚴重污染,影響人民的身體健康。且電器設備的觸點和焊點中都含有貴金屬,應設法回收再利用。
三、生產工藝簡介
根據原料、規模、產品方案的不同、回收工藝有所區別。總體上講,針對銅、鉛陽極泥有火法和濕法之區別,針對二次資源則除火法濕法之外還涉及拆解、機械和預處理工序。
1、銅陽極泥處理工藝
l 火法工藝
火法的傳統工藝流程如下
銅陽極泥
H2SO4 硫酸化焙燒 煙氣(SO2 SeO2) 吸收
稀H2SO 浸出 CuSO4 溶液 粗Se
浸出渣
還原熔煉 爐渣
貴鉛
NaNO3 氧化精煉 渣滓 回收Bi Te
銀陽極
銀電解 海綿銀 銀錠
黑金粉
金電解 廢電解液 回收鉑、鈀
金板 金錠
該流程的主要環節是硫酸化焙燒浸出分離,銅轉化為可溶性硫酸銅,硒化物分解使硒氧化為二氧化硒揮發分離,含SeO2 和SO2 的氣體由氣管抽至吸收塔,SeO2被水吸收生成H2SeO3,並同時被在水中的SO2還原為粗Se。焙燒浸出得CuSO4和部分AgSO4硫酸碲溶液,用銅(片或粉)置換出含碲的粗銀粉送銀精煉。金、銀富集在浸出渣中。還原熔煉主要用浸出渣加氧化鉛或鉛陽極泥合並進行,產出含金銀的貴鉛,然後貴鉛經氧化精煉分離鉛、鉍和碲,澆鑄為金銀合金,經銀電解及精煉,產出海綿銀鑄錠,銀泥(黑金粉)電解得金,金電解廢液回收鉑、鈀。該法的特點是回收率高,可達90%以上,對原料適應性強,比較適合規模處理,歐美和前蘇聯國家大多採用火法流程,流程的缺點是冗長,中間環節多,積壓金屬和資金嚴重,特別是規模小時更為突出,影響經濟效益。除此之外,高溫焚燒產生有害氣體,特別是鉛的揮發,產生二次污染,因此它的應用受到限制。
● 濕法工藝
20世紀70年代濕法流程迅速崛起,並得到國內冶金界的認可,下面做以簡單介紹:
銅陽極泥
H2SO4 浸出銅 CuSO4溶液
乙酸鹽 浸出鉛 Cu、Pb溶液
HNO3 浸出銀 AgNO3溶液 Ag
王水 浸出金 渣 熔煉 回收Sn
金溶液
萃取精煉
金粉
該法用不同的酸分段浸出陽極泥中的賤金屬雜質,以富集金、銀。用H2SO4先使銅成為CuSO4,以乙酸鹽常溫浸出鉛,使鉛生成可溶的乙酸鉛(Pb(Ac)2)分離。浸出渣用硝酸溶解銀、銅、硒、碲,含銀溶液用鹽酸或食鹽沉澱出氯化銀(AgCl),其純度可達99%以上,回收率可達96%,再從氯化銀中精煉提取銀,用王水從硝酸石溶渣中溶解金,金溶液用二丁基卡必醇(DBC)萃取,草酸直接還原得金產品,金純度>99.5%,回收率可達99%。濕法工藝金銀總回收率分別大於99%和98%。由於全流程金屬分離都在酸性水溶液中進行,因此稱為全濕法工藝,與火法工藝相比,有能耗低,有價金屬綜合利用好、廢棄物少、生產過程連續等優點。
l 選冶聯合工藝流程;
銅陽極泥
H2SO4 磨礦脫銅
浸出 CuSO4溶液
浸出渣
H2O 調漿
浮選 尾礦 煉鉛
精礦
焙燒 焙煉 煙氣 回收硒
銀陽極 電解 銀粉 銀錠
黑金粉 電解 金板 金錠
該流程用於處理含鉛高的銅陽極泥,流程包括陽極泥加硫酸磨礦及浸出銅,含金、銀的浸出渣調漿進行浮選,選出的精礦進行蘇打氧化熔煉產出銀陽極,電解產出銀和金粉等工序。流程中金、銀回收率分別達到95%和94%。由於引入浮選工序,精礦熔煉設備規模為火法工藝的1/5,試劑消耗節約一半,減少了鉛的污染,簡化了後續熔煉過程,提高了經濟效益。
l 天津大通銅業有限公司金銀分廠陽極泥處理流程
成份
Cu Au Ag Pb Sb Bi Sn Ni As Te
15.64 2132g/T 15.94 9.95 20.17 1.32 0.92 0.40 7.30
流程
陽極泥
H2SO NaClO3(氧化劑)
稀酸浸出
控電位V420mv
爐渣 爐液
HCl H2SO4 NaClO3
V.1200mv金的控電氯化 沉Se Te
SO2 Cu粉置換
SO2 SeO2 溶液
爐液 NaClO3爐渣1200mv 回收得H2SeO3
粗Te CuSO4
尾液 Au粉 硒
草酸 二次金的控電氯化 濃縮結晶 尾液
爐液 爐渣
Au粉 尾液 硫代硫酸鈉浸銀
鑄Au錠
爐渣 爐液
富集Pb.Sb 水含肼沉銀
外銷
尾液 銀粉
銀粉
銀陽極泥
電解
電銀 陽極泥 電解液
回收金
該流程設計上沒有預焙燒工序,而是以浸銅時添加氧化劑(NaClO3),使陽極泥中Cu、Se、Te氧化成為CuSO4、H2SeO3和H2TeO3並轉入溶液,在溶液中的H2SeO3用SO2還原得到粗Se。Te則用銅粉置換得Te精礦,CuSO4經濃縮得到結晶CuSO4.5H2O。浸出渣經二次控電氯化浸出金,一次浸出金用SO2還原,二次浸出金用草酸還原,金的回收率可達98.4%,控電氯化渣用硫代硫酸鈉(Na2S2O3)浸銀。硫代硫酸鈉試劑毒性小,消耗少,反應速度快,適於處理含銀物料,銀的回收率可達99%,純度達99%。
大通銅業有限公司的陽極泥含鉛和銻比一般的銅陽極泥高,類似於鉛陽極泥,因此所用的流程類似於鉛陽極泥的氯化法流程,首先用FeCl3或HCl+NaCl溶液浸出鉛陽極泥中的銅、砷、銻、鉍及部分鉛,同時有少部分銀生成AgCl2-溶解,浸出液用水稀釋至PH0.5,使SbCl3水解為SbOCl沉澱,同時沉澱出AgCl(沉澱率達99%以上),浸出渣用氨溶液浸出銀,使轉為可溶性的Ag(NH3)2Cl,再從溶液中用水合肼還原銀,氨浸出渣用HCl+Cl2或HCl+NaClO3浸出回收金,區別在於金、銀回收先後的選擇問題,這需要視具體成分而定。
以上是處理各種陽極泥的幾種典型原則流程,可根據處理陽極泥的成分進行不同的組合。
2、金、銀基合金及雙金屬復合材料以及帶載體的貴金屬廢催化劑的回收流程。
●金銀合金和金屬廢品廢料、廢件的回收流程
含Au、Ag以及ΣPt的雙金屬廢料廢件
預處理
熱分解400~600℃
硝酸浸出
難溶的殘渣(Au、Pt、Pb等) 硝酸浸出液(含Ag及其它金屬)
Cl
溶解 回收AgCl
殘渣 溶液 AgCl 其它金屬
硫化物SO2或NaSO3
沉金 粗Ag提純
粗Au 溶液(Pt、Pb)
提純
預處理可以是拆解或機械處理,熱處理的主要目的是在400~600℃條件下去除有機物,以及低溶點的金屬,然後用qN HNO3溶解,使物料中的銀和其它賤金屬氧化,以硝酸鹽形式轉入溶液,從溶液中回收銀和提純,硝酸不溶殘渣,可以用王水或水氯化浸出或其它溶解金、鉑和鈀,從溶液中回收分離提純Au、Pt和Pd。
黃金的提純:粗金返溶解用二丁基必醇萃取金,反萃之後,再沉金,得到提純。而含Pt、Pd溶液可用二烷基硫醚或N-二仲章基氨基乙酸(N540)萃取鈀,達到與鉑的分離,鈀的萃取率可達99.5%,鉑的萃取率幾乎是零。有機相經水洗後用NH3.H2O反萃取鈀,反萃取液再回收提純鈀。二烷基硫醚被認為是迄今為止工業上分離鉑、鈀最有效的萃取劑,它的唯一缺點是穩定性稍差,易氧化,萃取平衡時間稍長,萃取液回收鉑。當然也可以用30%N540異戊醇+70%煤油萃取鉑和鈀分離。30%N540萃鉑的條件4級萃取,1級洗滌3級反萃、鉑的萃取率可達99.9%,4NHCl反萃,反萃率為99.95%,從反萃液中獲得純度為99.9%的鉑產品。
對於鉑、鈀的分離提純問題,傳統的方法是反復沉澱法,水解沉澱法,硫化物沉澱,氨鹽沉澱或離子交換分離。沉澱法的缺點,首先是分離效率不高,其次是周期長,回收率低,試劑消耗大、操作條件不佳麻煩。離子交換法,樹脂飽和濃度低,用量大,交換徹底、交換時間長。萃取分離提取是近期崛起的分離方法,它的傳播速度快,避開濕法冶金中最為繁雜的液固分離的問題,萃取劑可循環使用,流程相對簡單,周期短,金屬回收率高,純化效果好的優點。因此被廣泛應用。
● 以∑Pt為載體的催化劑回收流程
∑Pt載體有蜂窩狀和小球狀高溶點硅、鋁酸鹽,由於高溫使用過程部分貴金屬會向內層滲透,部分被燒結或被釉化包裹,或轉化為化學惰性的氧化物和硫化物,因此他們的回收利用帶有一定的難度。他們的回收必須經預處理富集階段,然後再行分離提純,預處理富集階段分為:
▲火法富集法,高溫熔煉以鐵為輔收劑。碳作還原劑,加碳熔劑使載體轉變為低熔點、低粘度爐渣,獲得含富鉑族金屬的鐵合金,後續酸浸除鐵,獲得鉑族金屬精礦。該方法的Pd、Pt回收率分別為99%,98%以上。也可以用硫化物(Fe2S,Ni3S2)作捕收劑,較低溫度熔煉,獲得冰鎳後用鋁活法化酸浸,獲得鉑族金屬精礦。
▲載體溶解法:γ—Al2O3載體催化劑,經磨細用H2SO4.NaOH或NaOH+Na2SO3+聯胺溶液直接溶解氧化鋁,而貴金屬全部富集在不溶解渣中。
▲再後續的分離提純就可以接以上流程濕法部分,形成完整的流程。
2. 如何才能將「王水」中的黃金取回~~!!
一、 金的回收技術
[1]從貼金文物銅回收金 物資再生利用研究所採用氧化焙燒法從廢貼金文物銅回收金。廢貼金文物銅放入特製焙燒爐內,於1000C恆溫氧化焙燒30分鍾,取出放入水中,貼金層附在氧化銅鱗片上與銅基體脫離。然後用稀硫酸溶解,溶解渣分離提純黃金。此法特點焙燒時無污染廢氣。用此法處理廢文物銅300公斤,回收黃金1.5公斤。金回收率>98%,基體銅回收率>95%,副產品硫酸銅可作殺蟲劑。
[2] 從廢電子元件中回收金 北京稀貴金屬化冶廠使用I2-Nal-H2O體系。對廢元器件上的金鍍層溶蝕,用鐵置換或亞硫酸鈉還原回收金。用硫酸酸化,氯酸鉀氧化再生碘。物資再生利用研究所研究出電解退金的新工藝。採用硫脲和亞硫酸鈉作電解液,石墨作陰極板,鍍金廢料作為陽極進行電解退金。通過電解,鍍層上的金被陽極氧化為Au+後即與硫脲形成絡陽離子Au[cs(NH2)]2+,隨即被亞硫酸鈉還原為金,沉於槽底,將含金沉澱物分離提純獲得純金粉。基體材料可回收鎳鈷。此工藝金的回收率為97~98%。產品金純度>99.95%。
[3] 從廢催化劑中回收金和鈀 昆明貴金屬研究所採用鹽酸加氧化劑多次浸出,使金和鈀進入溶液,鋅粉置換,鹽酸加氧化劑溶解,草酸還原得純金粉;還原母液用常規法提純鈀。金、鈀純度均可達99.9%。回收率分別為97%和96%。已申請中國專利。
鉑族金屬的回收技術
[1] 硝酸工廠中回收鉑的方法 硝酸生產所用鉑、鈀、銠三元合金催化劑網,生產中耗損的貴金屬大部沉積在氧化爐灰中。昆明貴金屬研究所和太原化肥廠合作研究,工藝流程如下:爐灰→鐵捕集還原熔煉→氧化熔煉→酸浸→渣煅燒→濕法提純→鉑鈀銠三元合金粉。Pt、Pb、Rh直收率83%,總收率98%,產品純度99.9%。舊鉑網回收工藝簡單,廢網經溶解、提純、還原後再配料拉絲織網,其回收率>99%。
[2] 玻纖工業鉑的回收 昆明貴金屬研究所提出,將Pt、Rh、Au合金廢料用王水深解,趕硝轉鈉鹽,過氧化氫還原分離金,離子交換除雜質,水合肼還原得純Pt、Rh。鉑銠產品純度99%,回收率99%。物質再生利用研究所提出用「白雲石一純鹼混合燒結法」從廢耐火磚,玻璃渣中回收鉑銠的工藝。廢耐火磚經球磨、溶融、水碎、酸溶、過濾、濾渣用王水溶解,趕硝,離子交換;水合肼還原,獲鉑銠產品。鉑銠總收率>99%,產品純度99.95%。該所結合多年生產實踐提出選冶聯合法回收廢耐火磚中鉑銠,降低了成本,縮短了工藝,收到較好的效果。
[3]從廢催化劑中回收鉑、鈀 其一,溶解貴金屬法,昆明貴金屬研究所與上海石化總廠採用高溫焙燒、鹽酸加氧化浸出,鋅粉置換,鹽酸加氧化劑溶解,固體氯化銨沉鉑,鍛燒得純鉑,產品鉑純度99.9%,回收率97.8%。已申請中國專利。其二,物資再生利用研究所與核工業部五所合作採用「全熔法」浸出,離子交換吸附鉑(或鈀),鉑的回收率>98%。鈀的收率>97%。產品純度均>99。95%。已申請中國專利,並在數家工廠使用。其三,物資再生利用研究所與揚子石化公司合作研究從廢鈀碳催化劑中回收鈀。廢催化劑經燒碳,氯化浸出,氨絡合,酸化提純,最後水合肼還原獲純度>99.95%海綿鈀,絡合渣等廢液中少量鈀經樹脂吸附回收。鈀回收率>98%。已申請中國專利。
[4]廢鉑、錸催化劑回收 其一,物資再生利用研究所與長嶺煉油廠合作,採取「全溶法」浸出,離子交換吸附鉑錸,沉澱劑分離鉑錸的方法。鉑回收率>98%,錸收率>93%,鉑錸產品純度均>99.95%,尾液硫酸鋁可做為生產催化劑載體原料。其二,清華大學與北京稀貴金屬提煉廠合作。用萃取法回收廢催化劑中的鉑錸。廢催化劑用40%硫酸溶解,溶解液中用40%二異辛基亞碸萃取錸,反萃液生產錸酸鉀,硫酸不溶渣灼燒除碳,酸溶浸鉑,浸鉑液經40%二異辛基亞碸萃取鉑,反萃液還原沉鉑。鉑的萃取率>99%,反萃率>99%,鉑直收率>97%,產品鉑純度99.9%;錸的萃取率>99%,反認率>99%。
[5]鉑銠合金分離提純 昆明貴金屬研究所提出:鉑銠合金用鋁合金「碎化,稀鹽酸浸出鋁,得到細鉑銠粉,鹽酸加氧化劑溶解,溶液用三烷基氧化膦萃取分離鉑銠,離子交換提純銠。銠純度99.99%,銠回收率92~94%。已申請中國專利。其二,成都208廠從日本引進一套鉑銠分離設備,鉑收率98.5%,銠收率95%,鉑銠產品純度均>99.95。
[6]從鋨銥合金廢料提純鋨 原中國物資再生利用總公司華東分公司採用通氧燃燒分離鋨銥,鹼液吸收氧化鋨,硫化鈉沉澱,除硫得粗鋨,再氧化,鹽酸液吸收,氯化銨沉澱,氫還原,製取純鋨粉,鋨回收率>98%。此方法適用於含鋨3%~8%的廢料。
[7]筆尖磨削廢料中釕的回收 華東分公司提出用浮選法回收含釕0.4%~1%的筆尖磨削廢料。油酸鈉為浮選劑,2#油為起泡劑,酸性介質。所得精礦含釕>5%,尾礦含釕<0.2%,釕回收率>90%。 [8]從廢催化劑渣中回收鈀和銅 其一,物資再生利用研究所用Hcl-H2O2二段逆流浸出,黃葯沉澱富集鈀與銅分離法從含Pd0.8%、Cu26.2%的廢催化劑泥渣中回收銅和鈀。回收率Pd>98%,Cu>95%[20]。其二,沈陽礦冶研究所用稀Hcl浸銅,鐵置換銅,浸出渣氧化焙燒,稀王水浸出,鋅粉置換,粗鈀二氯二氨絡亞鈀法提純,鈀純度99.99%。回收率>98%,銅收率92%
3. 日本用柿子皮從廢棄物中提煉稀貴金屬
一、內容概述
水果中含有的多酚具有吸附黃金的性質,而廢紙中的纖維素則可以吸附白金和鈀。一個小瓶子中的溶液表面,浮著閃閃發光的金屬粉末。在這種透明溶液中,加入了由杮子皮製成的茶色粉末狀吸附劑,用來將已經溶解在溶液中的離子全部吸附起來。以往在利用吸附劑來提煉貴金屬和稀有金屬時,金屬提取後還要進行加熱處理才行,因此會產生二
二、應用范圍及應用實例
據日本環境省水環境科稱,雖然目前尚未制訂工業廢水中含有稀有金屬的基本標准,但回收稀有金屬也是從對生態系統等的影響方面來考慮的。這對防止環境惡化具有積極作用。
三、資料來源
彭永清.2009.日本從廢棄物中提煉稀貴金屬.世界有色金屬,(8):32~33
4. 誰能否解釋垃圾廢品在目前我國處理水準
我國廢催化劑回收工作起步較晚。1971 年撫順石化三廠開始從廢重整催化劑中回收鉑、錸等稀貴金屬。近年該廠和中國石化科技開發中心三吉公司、海南坤元貴金屬有限公司合資興建了國內最大的鉑催化劑回收企業———撫順石化三廠催化劑聯營貴金屬廠。年處理 廢催化劑150t,可產鉑金屬450kg.,產值可達5000 多萬元。產品質量符合國家二級標准,其含鉑量大於99.95%。遼陽石油化纖公司從1982年到1985 年就處理了廢銀催化劑46t,回 收了金屬銀9t,得到副產品剛玉30t,創值176.15 萬元。該公司化工廠建有鑽錳催化劑回收 裝置,設計能力為1000t/a。該廠在1982~1985 年間就處理了鈷錳催化劑殘渣18891t,回收 了鈷、錳金屬167.7t,產值達604萬元。利潤達604萬元,並節省了以往焚燒鈷錳催化劑殘 渣的處理費用283 萬元。該公司從1982年到1985 年底就曾回收廢鎳催化劑90t,生產了工 業鎳51t,共獲利42 萬元。揚子石化實業總公司於1995 年底建成一套2000t/a 的鈷錳催化 劑殘渣回收裝置投產後年利潤約200 萬元。該公司的貴金屬廠設有鈀碳催化劑的回收裝置 生產能力為100kg/a。回收的氯化鈀用作該公司乙烯氧化制乙醛過程的催化劑,其性能與英 國的同類產品相同,但純度高、雜質少。該廠除了回收把外還進行鉑金催化劑的回收。近期 該公司又在准備進行廢銀催化劑的回收。上海石化總廠化工二廠則回收了二甲苯異構化用 的鉑催化劑一國內的硝酸生產廠家如:南化(集團)氮肥廠、雲南雲天化集團公司、滬天化集團公司、山西太原化肥廠、黑龍江化工廠、吉化公司化肥廠、河南開封化肥廠、山西化肥廠、陝西興平化肥廠、貴州劍江化肥廠、青島膠南化肥廠、河北石家莊化肥廠均採用原航空航天部的621研究所的鉑網捕集裝置回收鉑金屬催化劑其回收率大大高於美國恩格哈特公司的收率。內貿部徐州再生利用研究所就貴金屬催化劑的回收研究頗具成效,開發了一些流程簡單,回收率較高的新工藝如全溶一離子交換法已轉讓給相關企業實施了工業生產。清華大 學也作過鉑族催化劑的回收工藝研究,其萃取法工藝已被北京稀貴金屬提煉廠採用。國內 進行稀貴金屬催化劑回收的尚有江蘇如皋稀貴金屬冶煉廠、遼陽市宏偉貴金屬加工廠、江蘇 太倉永恆稀金屬提煉廠、南京紫金山鄉冶煉廠、江蘇江都華麗金屬冶煉公司、成都西南金屬 化工廠、湖南郴州市永興縣黃泥鄉有色金屬冶化廠、浙江寧海越溪福利工廠、上海永勝金屬 冶煉廠、山西太原華貴金屬有限公司等。 河南平頂山987 廠是原化工部的定點廢催化劑回收工廠。該廠每年從廢催化劑中回收的金屬鉍、鉬、鎳、鈷不下數十噸。1988年乘著我國頒布了環保法的東風,該廠又興建了兩條4000t/a 的廢釩催化劑生產線,足以將國內全部廢釩催化劑消耗掉。河北辛集化工三廠也是定點催化劑回收單位主要回收銅、鎳等賤金屬。 南化(集團)公司1971 年就曾回收過硫酸生產和萘氧化用的五氧化二釩催化劑,1973 年 就曾對廢鎳催化劑進行過研究,還對鋼- 鋅系及鐵- 鉻系變換催化劑進行過回收試驗。此 外吉林公主嶺催化劑廠、陝西寶雞催化劑廠和四川川化集團公司催化劑分廠都進行過有關 鐵- 鉻等催化劑的回收試驗。沈陽催化劑廠曾就鈷鉬、釩、鉑催化劑進行過回收。這些催化 劑生產廠家,大都將從廢催化劑中回收的金屬組分及其他有用物質再用於新催化劑的製造。 制氫和制氮廠均要使用氧化鋅脫硫劑,以中型廠計年耗量約15~20t 左右,折鋅10.27t以此為原料生產尿素鋅產品的就有江西二化、黑龍江浩良河化肥廠、甘肅劉家峽化肥廠、福建明化工總廠、安陽化肥廠等多家企業。甲醇催化劑和聯醇催化劑使用時期短的只有二三個月開展此類銅系催化劑回收的催化劑使用廠也有多家如:湖南大乘資氮集團公司、湘江氮肥廠、陝西興平化肥廠、上海太平洋集團公司吳涇化工廠、甘肅劉家峽化肥廠、福建晉江安海東風化工廠、北京化工實驗廠和四川成都制葯廠等。 南京化工大學於20世紀70年代初於高等院校中率先開展了鐵鉻中變催化劑的回收研究。其後有幾十所大專院校涉足廢催化劑的回收研究。如南方冶金學院研究了貴金屬催化劑的回收。華東理工大學、武漢鋼鐵學院、南京師范大學研究了釩催化劑的回收。山東濰坊教育學院、天津輕工業學院、沈陽化工學院和佳木斯大學都對鎳催化劑進行了研究。河北輕化工學院、湘潭大學、河北科技大學和上海石化專科學校對CO-MO催化劑進行了研究。此外還有吉林化工學院、成都地質學院、鄭州大學、成都大學、杭州大學、吉林工學院、華南理工大學和武漢化工大學等院校分別就銅系、鋅系及汽車排氣凈化催化劑、鐵- 鈷系等催化劑展開了研究。催化劑研製單位如南化(集團)研究院於70年代初期就對鐵- 鉻系、釩系、鋅系等廢催化劑的回收進行過研究。西北化工研究院和上海化工研究院就氧化鋅脫硫劑開展過研究。河南化工研究所就銅鋅系展開過研究、此外安徽銅陵有色設計研究院、北京化工研究院、山西煤炭所、常州化工研究所、廣東化工研究所、天津化工研究院、中石化齊魯石化研 究院及河北石化研究院等分別就鉑族貴金屬催化劑、鈷鉬催化劑、銠系催化劑、鋅系催化劑 和鈀系催化劑等展開過研究。 改革開放以來涌現出一批鄉鎮企業如河南尉氏縣雙發福利化工廠,江蘇宜興古王化工 有限公司、湖北襄樊宏公第二化工廠,河北省元氏磷肥廠以及江蘇太倉精細製品廠也都先後 加入了廢催化劑回收再利用的隊伍。 阿邁隆金屬公司總部設在英國倫敦,是一個全球性的金屬回收再生公司。目前該公司已在我國上海設立了辦事處。該公司回收來自化工、石油加工、食油工業及相關工業生產中產生的多種廢催化劑。每年回收富含金屬的二級物料約其中僅鈀、鉑、銀等稀貴金屬就達幾千噸,此外還回收鈷、鎳、銅、鋅、鐵、鉻和釩等多種有色金屬。 總的來說,在廢催化劑利用方面我國已開創出了一條不同於國外的較符合本國國情的 路子,並已取得一定業績。但多以贏利為目的。目前有些廢催化劑竟成為供不應求的搶手 貨。但其中有些回收工藝落後,設備陳舊,回收率不理想,造成資源的浪費、又有二次污染, 需加以改進。由於國內催化劑使用技術總體水平不算高,廢催化劑更換頻率和數量均高於 國外。與國外相比,廢催化劑總的回收利用率並不高,資金的投入也較少,有些設備和技術 尚跟不上形勢的發展。此外國內對廢化劑尚缺乏系統的研究和相應的組織機構和法規,廢 催化劑的回收利用工作往往受金屬價格的波動的影響,一些回收價值不高但污染嚴重的廢 催化劑,尚未得到應有的處理
5. 有沒有熱心人幫忙告訴金屬回收之後的可再利用價值。必有重謝
你這個題目比較大,我簡單的介紹一下吧。
金屬回收後需要分類處理,鈦、銅、鋁(金銀等貴金屬就不談了)可以單獨處理,紫銅(純銅)可以直接用於導電銅排、電纜等的生產。有雜質的可以用於生產銅合金。
鈦也一樣,純鈦廢料可以用中頻爐融化回收生產鈦錠。鋁可以冶煉鋁合金,比如易拉罐,可以直接融化生產出含量比較純的鋁錠。
合金鋼(當然主要成分是鐵)要看合金的成分,根據合金成分可以用於生產特種鑄鋼、鑄鐵。比如球磨機鋼球、爐條。金屬鎢、鉬等含量高時可以單獨處理。
至於一般的廢鋼,一般都回爐煉鋼了。個別小廠子會用於生產地條鋼。
6. 白銀的提煉方法
項目名稱:廢水提煉白銀技術 (最新) 眾所周知白銀是全球性稀貴金屬,國內外市場一直走高,供不應求,從廢水廢料中提煉白銀技術簡單易行,經濟價值高!每人每天可獲利潤800元以上! 最新廢水提煉白銀技術 眾所周知白銀是全球性稀貴金屬,國內外市場一直走高,供不應求,從廢水廢料中提煉白銀技術簡單易行,經濟價值高!而且更重要的是原料來源廣泛,取之不盡(各地醫院,照相館,印刷廠,電鍍廠,制鏡廠,半導體原件廠等單位的廢棄液)據報載:浙江仙居有500多農民從事此業,年產值達2億元,有的農戶年利潤達30多萬元,每人每天可加工廢料90公斤,提煉白銀0.6-0.8公斤白銀(含量達98%以上),每人每天可獲利潤800元以上! 白銀是種價格比較昂貴的金屬,工業商業用途極其廣泛,在全國各地所有城市的諸多行業中,因為不了解廢水回收白銀的技術而白白的浪費了大量的再利用資源,同時造成嚴重的環境污染,使動物機體降低了免疫功能,引發組織的病理變化等危害。進行再利用技術,不僅凈化環境、降低污染,還可以為我們帶來不菲的經濟效益。 這項神秘技術長期以來總是掌握在極少數南方人的手裡,秘而不宣(但所提煉的白銀質量差、純度不高),據我們了解,目前國外市場還是空白,現在經過我們的多年的實驗,所提煉白銀的純度在原有純度的基礎上增進了十七個百分點,是目前國內最先進的提煉白銀技術。 最新廢水提煉白銀技術 ,與傳統的提銀方法相比,操作過程簡便,葯品設備投入更少。本提取工藝能夠在提取白銀的同時使廢定影液再生,所以就有可能在醫院等處回收廢定影液時,減少收購成本,甚至不需要給錢,因而提高效益。 對於中國商機在線會員我們免費提供此技術,並免費提供幾百家白銀收購單位。購買此技術180元。含現場操作光碟和詳細書面資料。 參考資料:http://www.81188.cn/wz/fsty/fsty.htm
採納哦
7. 金屬回收的回收技巧
電解退銀新工藝
物質再生應用研究所自行設計電解退銀設備,以石墨板為陰極,不銹鋼滾筒為陽極,滾筒上有許多細孔。檸檬酸鈉和亞硫酸鈉為電解液,鍍銀件從滾筒首端進入,從滾筒尾端送出。鍍件表層上的銀進入電解液,鍍件基體完全無損可返回從新電鍍應用。銀回收率97—98%,銀粉純度99.9%。
廢銀—鋅電池的回收應用
廢銀鋅電池含銀52.55%、含鋅42.7%。鋅為負極,氧化銀為正極塗在銅網骨架上。物質再生應用研究所採用稀硫酸分手浸鋅和銅,銀粉間接熔錠。稀硫酸浸銅時參加氧化劑,含鋅液經濃縮結晶消費硫酸鋅,含銅液濃縮結晶消費硫酸銅。鋅回收率>98%,銀回收率98%,銀錠純度>99%。
從廢膠片中回收銀
昆明貴金屬研究所應用稀硫酸液洗脫彩片上含銀乳劑層,氯鹽加熱沉澱鹵化銀,氯化培燒或有機溶劑洗滌除有機物,鹼性介質用糖類固體懸浮恢復得純銀。銀純度99.9%,直收率98%。此法已要求專利。
物質再生應用研究所(原內貿部物質再生應用研究所)採用硫代硫酸鈉溶液溶解廢膠片上的鹵化銀,溶解過程中參加抑制劑阻止膠片上明膠的溶解,溶解液經電解回收銀,片基回收應用。銀浸出率>99%,回收率98%,銀純度99.9%。此法已應用於工業消費。
8. 電子垃圾可以回收什麼金屬
電子垃圾中含有多種金屬,電子垃圾的種類不同,其中的金屬種類及含量也不同。大部分電子垃圾中都含有銅、鐵、鋁等常見金屬,除了常見金屬外,部分電子垃圾(特別是新型現代電子垃圾如:手機、電腦等電子產品)中含有金、銀、銦、鈀、銠等稀有貴金屬。但由於目前的提煉技術及電子垃圾中稀貴金屬的含量限制,能回收的稀貴金屬種類也有所限制。
9. 資源綜合利用,國家採取什麼措施
指導思想和基本原則
以鄧小平理論和「三個代表」重要思想為指導,深入貫徹落實科學發展觀,堅持節約資源和保護環境的基本國策,遵循政府推動、市場引導、企業主體、自主創新、因地制宜、重點突破的方針,加快科技創新,推廣先進適用技術,推進資源綜合利用產業化,提高資源利用效率,減少廢棄物排放,促進經濟社會又好又快發展。
堅持宏觀調控與市場機制相結合,發揮市場配置資源的基礎性作用,完善政策體系,建立有利於促進資源綜合利用的長效機制;堅持以企業為主體,產學研相結合,選擇環境影響嚴重、產生量大
的廢棄資源,組織技術攻關,強化科技創新能力建設;堅持重點突破和全面推進相結合,依據資源稟賦和產業構成,形成資源綜合利用產業集群,探索和完善循環經濟發展模式。
(三)主要范圍
一是在礦產資源開采過程中對共生、伴生礦進行綜合開發與合理利用的技術;二是對生產過程中產生的廢渣、廢水(廢液)、廢氣、余熱、余壓等進行回收和合理利用的技術;三是對社會生產和消費過程中產生的各種廢棄物進行回收和再生利用的技術。
二、礦產資源綜合利用技術
(一)能源礦產資源綜合利用技術
1.石油天然氣礦產資源綜合利用技術
(1)推廣在油田開發建設中,採用適用技術,對伴生天然氣進行回收利用。
(2)推廣從石油和天然氣中回收硫資源生產硫磺技術。
(3)推廣高效井下污水處理和再生利用技術。
(4)推廣柴油機余熱利用技術。
(5)推廣採用不穩定排放硫化氫氣體資源化利用技術回收井口無組織排放的含硫化氫氣體。
(6)推進頁岩氣勘探開發技術。
(7)研發廢棄鑽井液、井下作業廢液資源化利用和無害化處置技術。
2.煤炭資源綜合利用技術
(1)推廣無煤柱開采技術,推廣採用不穩定或難採煤層開采技術、邊角煤殘采技術。
(2)推廣煤系高嶺土超細、增白、改性技術。
(3)推進煤系鋁礬土、耐火粘土、膨潤土、硅藻土、硫鐵礦、油母頁岩和石墨等資源綜合利用技術的產業化。
(4)推進煤炭地下氣化(UCG)技術的產業化,特別是加快具有井下無人、無設備,集建井、採煤、氣化三大工藝於一體,適用於煤礦大量的煤柱、建築物下壓煤等呆滯煤量回收利用技術的研發和產業化。
(5)研發難選煤、干法選煤和高硫煤綜合利用技術。
(6)研發「三下」(建築物下、鐵路下、水體下)及矸石充填採煤技術;研究提高開采上限技術。
(7)研發礦井水資源化利用技術。
3.地熱資源利用技術
推廣採用熱泵等技術,利用地下熱能進行採暖和製冷。
(二)金屬礦產資源綜合利用技術
1.黑色金屬礦產資源綜合利用技術
(1)推廣磁鐵礦精選作業的磁篩等高效利用技術。
(2)推廣含稀土復合礦和釩鈦磁鐵礦綜合利用技術。
(3)推廣低品位、表外礦、復雜共伴生黑色金屬礦產資源綜合利用技術。
(4)推進尾礦再選技術及生產各種建築材料的產業化。
(5)研發低品位硫鐵礦選礦富集技術。
(6)研發尾礦干堆技術和尾礦高效濃縮工藝及設備。
2.有色金屬礦產資源綜合利用技術
(1)無廢(少廢)開采技術
--推廣尾砂充填、廢石充填、全尾砂膏體充填等充填法采礦技術。
--推廣原地浸出采礦技術。
(2)推廣採用大型低品位礦產自然崩落法技術開采。
(3)推廣拜耳法用於低鋁硅比一水硬鋁石礦的選礦。
(4)推廣低品位、表外礦、復雜共伴生有色金屬礦產資源綜合利用技術。
(5)推廣復雜多金屬硫化礦礦漿電解處理技術及中低品位氧化鋅礦選冶聯合處理技術。
(6)推廣銅鉛鋅錫礦細粒、微細粒礦載體浮選技術。
(7)推廣銅礦等有色金屬礦伴生金、銀等貴金屬的綜合利用技術。
(8)推廣有色金屬硫化?D?D氧化混合礦選礦技術。
(9)推廣濕法冶金關鍵裝備應用。
(10)研發礦山塌陷區、廢石堆場和尾礦庫修復與墾植技術。
(11)研發對復雜有色金屬礦石選別與富集技術。
(12)研發低品位礦生物提取技術。
(13)研發尾礦有價金屬綜合回收利用技術。
3.貴金屬礦產資源綜合利用技術
(1)推廣含金銀等多金屬礦選礦尾渣中綜合回收有價金屬成分和非金屬礦資源的礦物加工技術。
(2)推廣採用復雜金礦循環流態化焙燒技術。
(3)推廣高硫高砷高碳復雜難處理金礦的預處理技術。
(4)推廣浮選富集?D炭浸工藝技術等低品位金礦的綜合利用技術。
4.稀有、稀土金屬礦產資源綜合利用技術
(1)推廣採用電解工藝開發稀土鎂中間合金技術,綜合利用稀土尾礦。
(2)推廣高效低毒高純氧化銪提取技術。
(3)推進稀土冶煉分離清潔生產工藝技術的產業化。
(三)非金屬礦產資源綜合利用技術
1.化工原料非金屬礦產資源綜合利用技術
(1)鹽湖鉀鹽綜合利用技術
--推進鹽湖鉀鹽伴生礦綜合利用技術的產業化。
--研發固體難采鉀礦溶采技術,非水溶性鉀礦開發利用技術。
(2)磷礦綜合利用技術
--推廣磷礦伴生鐵、硫、氟、碘、釩、鈦等資源綜合回收技術。
--推廣反(雙)浮選磷礦降鎂技術。
--研發中低品位磷礦、中低品位膠磷礦選礦技術和窯法直接利用技術。
(3)硼礦綜合利用技術
--研發低品位硼礦選礦技術。
--研發硼鐵礦中硼、鐵、鈾有效分離和回收技術。
(4)研發中低品位螢石綜合利用技術。
(5)研發鉀長石綜合利用技術。
2.建材原料非金屬礦產資源綜合利用技術
(1)玻璃陶瓷原料非金屬礦有效利用技術
--推廣硅質原料非金屬礦產的均化開采以及浮選技術。
--推廣陶瓷生產採用低品位原料配方技術產業化。
--推廣利用中低品位高嶺岩替代葉蠟石生產玻璃纖維技術產業化。
(2)填料及其它深加工用非金屬礦的合理利用技術
--推廣利用煤系高嶺土生產高檔填料、塗料技術。
--推廣溫石棉尾礦提取輕質氧化鎂及綜合利用技術。
--推廣偉晶岩中石英提純技術。
(3)推廣石灰石礦均化開采配比技術。
(4)推廣石英砂岩提純技術。
(5)研發低品位菱鎂礦、滑石、硅藻土、藍晶石族等非金屬礦選礦綜合利用技術。
三、工業「三廢」綜合利用技術
(一)煤炭工業「三廢」綜合利用技術
1.煤矸石綜合利用技術
(1)煤矸石發電技術
--推廣適合燃燒煤矸石的大型循環流化床鍋爐,在有條件的地區推廣熱、電、冷聯產技術和熱、電、煤氣聯供技術。
--推廣爐內石灰脫硫和靜電除塵技術。
--研發煤矸石等低熱值燃料電廠鍋爐高效除塵、脫硫、灰渣干法輸送、存儲及利用技術。
(2)煤矸石生產建築材料技術
--制磚技術。推廣全煤矸石生產承重多孔磚、非承重空心磚和清水牆磚技術。
--制水泥技術。推廣利用煤矸石為原料,部分或全部代替粘土配製水泥生料,燒制水泥熟料技術。
--生產其他建材產品技術。推廣利用煤矸石為原料生產陶瓷製品、陶粒、岩棉、加氣混凝土等技術。
(3)推廣利用煤矸石充填採煤塌陷區、采空區和露天礦坑及煤矸石復墾造地造田技術。
(4)推廣利用煤矸石製取聚合氯化鋁、硫酸鋁、合成系列分子篩等化工產品技術。
(5)推廣利用煤矸石生產復合肥料技術。
(6)推廣煤矸石中極細粒鈦鐵礦、銳鈦礦等雜質的分離技術。
(7)研發利用煤矸石生產特種硅鋁鐵合金、鋁合金技術,以及利用煤矸石生產鋁系列、鐵系列超細粉體的技術。
(8)研發煤矸石提取五氧化二釩及其他稀有元素技術。
2.礦井水綜合利用技術
推廣採用混凝、沉澱(或浮升)以及過濾、消毒等技術,凈化處理煤礦礦井水。
3.煤層氣綜合利用技術
(1)推進煤層氣民用、發電、化工等技術的產業化。
(2)研發低濃度瓦斯利用技術。
(二)電力工業「三廢」綜合利用技術
1.粉煤灰、脫硫石膏綜合利用技術
(1)粉煤灰綜合利用技術
--推廣採用粉煤灰生產水泥、砌塊、陶粒等建築材料技術。
--推廣採用粉煤灰建造水壩、油井平台、道路路基等建築工程技術。
--推廣粉煤灰製取漂珠、空心微珠、碳等化合物技術。
--推進高鋁粉煤灰提取氧化鋁技術的產業化。
--推進粉煤灰造紙及生產岩棉技術的產業化。
--研發粉煤灰用於農業(改良土壤、生產復合肥料、造地)、污水處理以及各類填充材料等技術。
(2)推廣脫硫石膏制水泥緩凝劑、紙面石膏板、建築石膏、粉刷石膏、砌塊等建材產品的綜合利用技術。
(3)研發脫硫石膏免煅燒制干混砂漿。
2.廢水綜合利用技術
推廣灰場沖灰廢水封閉式循環利用等技術。
3.廢氣綜合利用技術
推廣燃煤電廠煙氣中回收硫資源生產硫磺技術。
(三)石油天然氣工業「三廢」綜合利用技術
1.廢渣綜合利用技術
(1)推廣對油氣采煉過程中產生的各類油砂、污泥、殘渣、鑽屑採用固化等無害化綜合處理技術,並用於築路、製造建築材料、調剖堵水劑等。
(2)推廣石油焦乳化焦漿/油(EGC)代油節能技術。
(3)研發改進緩和濕式氧化(WAO)-間歇式生物反應器(SBR)處理鹼渣聯合工藝,形成專有成套技術。
(4)研發污水處理場油泥(包括罐底泥)、浮渣和剩餘活性污泥處理組合技術。
2.廢水(液)綜合利用技術
(1)推廣鑽井污水、廢液綜合處理技術,實現閉路循環利用。
(2)推廣煉油企業含氫尾氣膜法回收技術。利用膜分離技術建設芳烴、加氫尾氣膜法回收裝置,回收芳烴預加氫精製單元酸性氣、異構化富氫、加氫裂化低分氣、柴油加氫低分氣中的富含氫氣體。
(3)推廣採用中和、酸化以及各種精製技術,從石油煉制產生的酸鹼廢液、廢催化劑中,回收環烷酸、粗酚、碳酸鈉、浮選捕集劑等資源。
(4)研發石油化工高濃度、難降解的有機廢水處理技術以及油田廢水替代清水技術。
(5)研發經濟有效的廢水深度處理技術和回用技術、氨氮廢水處理技術與回收利用技術。
3.廢氣綜合利用技術
(1)推廣對煉油廠催化裂化過程中產生的高溫煙氣採用氣能量回收技術進行能量回收。
(2)研發催化裂化再生煙氣、加熱爐氣、工藝排氣及電站排氣中二氧化硫和氮氧化物處理技術。
(四)鋼鐵工業「三廢」綜合利用技術
1.冶煉廢渣綜合利用技術
(1)推廣煉鋼爐渣回收和磁選粉深加工處理技術。
(2)推廣立磨粉磨粒化高爐礦渣技術。
(3)推廣硫鐵礦燒渣綜合利用技術。
(4)推廣冷軋鹽酸再生及鐵粉回收技術。
(5)推廣鋼渣返回燒結,替代石灰作為煉鐵廠燒結溶劑技術。
(6)推廣轉爐煤氣干法除塵及塵泥壓塊技術。
(7)推廣氧化鐵皮回收利用技術。採用直接還原技術製取粉末冶金用的還原鐵粉。
(8)推廣含鐵塵泥綜合利用技術。
(9)推廣廢鋼渣生產磁性材料技術。
(10)研發含鋅塵泥綜合利用技術。
(11)研發不銹鋼和特殊鋼渣的處理和利用技術,特別是防止水溶性鉻離子浸出的技術。
(12)研發鋼鐵渣游離氧化鈣、游離氧化鎂降解處理技術。
2.廢水(液)綜合利用技術
(1)推廣對不同濃度的焦化廢水優化分級處理與使用技術。
(2)推廣採用「電氧化氣浮」技術對廢水進行深度處理並回用。
(3)推廣污水深度處理脫鹽回用技術。採用抗污染芳香族聚醯胺反滲透膜,生產高品質的回用水。
(4)推廣冷軋含油乳化液膜分離回收技術。
(5)研發礦山酸性廢水治理與循環利用技術。
(6)研發礦山含硫礦物,As、Pb、Cd廢水處理與循環利用技術。
3.廢氣及余熱、余壓綜合利用技術
(1)推廣全燃燒高爐煤氣鍋爐的應用技術。
(2)推廣焦爐、高爐、轉爐煤氣的回收技術。
(3)推廣利用還原鐵生產中回轉窯廢高溫煙氣余熱發電技術。
(4)推廣高爐煤氣余壓發電TRT(高爐煤氣余壓透平發電裝置)結合干法除塵技術。
(5)推廣採用利用溴化鋰製冷等技術回收利用冶金生產過程中爐窯煙氣余熱。
(6)推廣採用雙預蓄熱式燃燒技術,實現爐窯廢氣余熱的利用。
(7)推廣鐵合金礦熱爐、燒結機等中低溫煙氣余熱發電技術。
(8)推廣焦化干息焦技術,回收利用焦炭顯熱。
(9)推廣低熱值煤氣燃氣-蒸汽聯合循環發電技術(CCPP)。
(10)推廣煉鋼廠除塵系統高溫煙氣余熱發電技術。
(11)推廣電爐余熱回收及綜合利用技術。
(12)推進燒結煙氣脫硫副產石膏資源化利用技術的產業化。
(五)有色金屬工業「三廢」綜合利用技術
1.冶煉廢渣綜合利用技術
(1)推廣採用爐渣選礦法從冶煉爐渣中回收金屬銅技術。
(2)推廣銅冶煉陽極泥及廢渣(料)綜合利用技術,回收金、銀、鉑、鈀、硒、碲、鉛、鉍、銦等。
(3)推廣銅冶煉冷態渣,鎳冶煉冷態渣深度還原磁選提鐵綜合利用技術。
(4)推廣採用「破碎-磁選分選焦煤」、「球磨-磁選生產鐵粉」等技術處理鋅渣、窯渣。
(5)推廣從鉛電解陽極泥中提取金銀的火法和濕法技術工藝。
(6)推廣鋅渣中提取銀的技術。
(7)推廣從鋅浸出渣中提取銦技術。
(8)推廣金屬鎂還原渣部分替代鈣質和硅質原料生產水泥技術。
(9)研發高效利用鉛鋅冶煉渣再回收鉛鋅技術,以及稀散金屬回收技術。
(10)研發低耗高效脫除氟、氯、氧化鋅物料技術。
(11)研發採用氫氣還原法從冶煉各類煙塵中製取金屬鍺綜合利用技術。
(12)研發赤泥綜合利用技術。
2.廢水(液)綜合利用技術
(1)推廣軋制廢油回收利用技術。
(2)推廣從生產印刷線路板產生含銅廢液中回收金屬銅技術。
(3)研發加工生產過程中表面處理廢液、酸洗污泥綜合回收技術。
3.廢氣及余熱綜合利用技術
(1)推廣採用氨吸收法技術,回收銅、鉛、鋅等有色金屬冶煉企業產生的煙氣二氧化硫,副產硫酸銨、硫酸鉀等。
(2)推廣採用鈣吸收技術,對二氧化硫煙氣脫硫並回用。
(3)推廣採用氧化鋅渣脫除鉛鋅冶煉煙氣二氧化硫技術。
(4)推廣冶煉廢氣中有價元素的回收利用技術。
(5)推廣菱鎂礦資源利用過程中二氧化碳回收以及生產二氧化碳衍生產品先進技術。
(6)推廣有色冶金爐窯煙氣余熱利用技術。
(六)化學工業「三廢」綜合利用技術
1.磷石膏等化工廢渣綜合利用技術
(1)推廣蒸氨廢渣綜合利用技術。
(2)推廣採用電石渣替代石灰石用於水泥工業、純鹼工業以及電廠的煙氣脫硫技術。
(3)推廣利用鉻渣作水泥礦化劑技術;鉻渣制自溶性燒結礦並冶煉含鉻生鐵技術;鉻渣作為熔劑生產鈣鎂磷肥技術;鉻渣制鈣鐵粉、鑄石、人造骨料、玻璃著色劑及鉻渣棉等技術。
(4)推廣磷石膏制磷酸聯產水泥、制硫酸鉀、制硫銨和碳酸鈣以及制硫酸銨、硫酸銨鉀等作為化工原料的綜合利用技術;磷石膏制水泥緩凝劑、紙面石膏板、建築石膏、粉刷石膏、砌塊等建材產品的綜合利用技術;磷石膏作為鹽鹼地改良劑技術。
(5)推廣黃磷爐渣生產水泥、混凝土、磷渣磚、保溫材料、低溫燒結陶瓷等技術。
(6)推廣黃磷泥生產五氧化二磷以及雙渣肥等綜合利用技術。
(7)推廣造氣煤渣綜合利用技術。
(8)推廣利用硼泥制備輕質碳酸鎂、氧化鎂等鎂鹽技術。
(9)推廣利用硼泥生產建築材料、農業肥料和冶金輔助材料技術。
(10)推廣氟石膏生產建築材料等綜合利用技術。
(11)研發磷石膏充填采礦技術。
2.廢水(液)綜合利用技術
(1)推廣純鹼生產中蒸氨廢清液曬鹽技術,採用高效蒸發技術和設備制氯化鈣聯產氯化鈉。
(2)推廣合成氨生產中採用水解汽提技術回收尿素。
(3)推廣氮肥生產污水回用技術。
(4)推廣循環冷卻水超低排放技術。
(5)推廣回收硼酸母液制備硼鎂肥、輕質碳酸鎂、氧化鎂等鎂鹽產品技術。
(6)推廣採用大孔徑吸附樹脂對2,3-酸廢水回收利用技術。
(7)推廣「樹脂吸附-氧化-樹脂吸附」技術對2-萘酚生產廢水進行治理和資源化利用。
(8)推廣處理DSD (4,4-二氨基二苯乙烯-二磺酸)酸氧化工序生產廢水採用樹脂法將有機物吸附並洗脫和回收利用的資源化技術。
(9)推廣苯胺、鄰甲苯胺和對甲苯胺生產廢水資源化技術。
(10)推廣樹脂吸附法處理氯化苯水洗廢水綜合利用技術。
(11)推廣從電鍍廢水中回收鎳、鈷等稀有金屬技術。
(12)推廣從制鹽母液中提取氯化鉀、工業溴、氯化鎂技術。
3.廢氣、余熱綜合利用技術
(1)推廣採用吸附、汽提、變壓吸附等技術,從電石法聚氯乙烯生產尾氣中回收氯乙烯、乙炔氣。
(2)推廣利用黃磷尾氣發電並提純一氧化碳生產甲醇、甲酸等化工產品技術。
(3)推廣醇烴化工藝替代銅洗工藝技術。
(4)推廣全燃式造氣吹風氣余熱回收利用技術。
(5)推廣濕法磷酸及磷肥生產副產品氟生產各種氟化物技術。
(6)推廣以碳酸鈉吸收硝酸生產尾氣中的氮氧化物,生產硝酸鈉、亞硝酸鈉的技術。
(7)推廣利用電石、炭黑生產尾氣中的一氧化碳,作為燃料及化工原料用於制甲醇、合成氨和羰基產品技術。
(8)推廣對含二氧化碳廢氣進行綜合利用技術。其中利用氨水吸收尾氣中二氧化碳製取碳酸氫銨;深冷製取液態二氧化碳或乾冰;用純鹼吸收二氧化碳製取碳酸氫鈉;用二氧化碳廢氣製取輕質碳酸鎂;用燒鹼廢液吸收二氧化碳製取純鹼;用廢氣中的二氧化碳代替硫酸分解酚鈉提取酚。
(9)推廣氯化氫廢氣綜合利用技術。其中用甘油吸收氯化氫製取二氯丙醇;在催化劑作用下製取環氧氯丙烷、二氯異丙醇,製取氯磺酸、染料、二氯化碳等化工產品;採用催化氯化法、電解法、硝酸氧化法生產氯氣;副產鹽酸生產聚氯乙烯等產品。
(10)推廣催化干氣蒸汽轉化法制氫技術。
(11)推廣草甘膦與有機硅生產中的氯元素循環利用技術。將草甘膦生產中的尾氣經回收凈化用於有機硅單體的合成。有機硅單體生產中產生鹽酸,經凈化後用於草甘膦合成,從而使含氯元素的化合物(氯甲烷、氯化氫)在草甘膦和有機硅兩大類產品之間實現循環利用。
(七)建材工業「三廢」綜合利用技術
1.廢渣綜合利用技術
(1)推廣石材加工碎石和采礦廢石生產人造石材(裝飾材料)技術。
(2)研發廢陶瓷高附加值再利用技術。
2.廢水綜合利用技術
推廣採用無機混凝劑(PAC)+高分子助凝劑(PHM)等混凝沉澱處理技術。
3.廢氣、余熱綜合利用技術
(1)推廣水泥窯廢氣余熱發電技術。
(2)推進玻璃熔窯廢氣余熱發電技術產業化。
(八)食品發酵工業「三廢」綜合利用技術
1.廢渣綜合利用技術
(1)推廣玉米脫胚提油和小麥提取蛋白技術。
(2)推廣利用酒精糟生產全糟蛋白飼料等技術。
(3)推廣啤酒廢酵母乾燥生產飼料酵母技術;廢酵母經酶處理制備醫葯培養基酵母浸膏技術。
(4)推廣檸檬酸廢渣替代天然石膏技術。
(5)推進啤酒廢酵母生產制備核苷酸、氨基酸類物質技術的產業化。
(6)推廣玉米芯生產木寡糖技術。
(7)推廣利用製糖廢糖蜜生產高活性酵母等發酵製品技術。
(8)推進利用酶技術從麥糟中提取功能性膳食纖維和蛋白質的產業化。
(9)推進果蔬濃縮汁生產廢渣制備果膠、功能性膳食纖維和蛋白飼料技術的產業化。
(10)研發酵母細胞壁殘渣制備甘露糖蛋白質及水溶性葡聚糖等。
(11)研發啤酒糟採用多菌種混合固體發酵生物改性,生產肽蛋白技術。
(12)研發馬鈴薯、木薯澱粉生產廢渣綜合利用技術。
2.廢水(液)綜合利用技術
(1)推廣發酵剩餘資源厭氧發酵生產沼氣技術。
(2)推廣麥汁煮沸二次蒸汽回用技術。
(3)推廣味精廢母液生產復合肥技術。
(4)推廣玉米浸泡水和谷氨酸離交尾液混合培養飼用酵母粉技術。
(5)推廣木薯乾片乾式粉碎和鮮木薯濕法破碎分離技術,濃縮出精澱粉漿液和蛋白黃漿。
(6)研發採用膜過濾技術(MF)回收菌體製成飼料技術。
(7)研發薯類澱粉生產高濃工藝廢水(俗稱汁水或細胞水)回收蛋白技術。
(8)研發適用於食品行業生產的膜材料及膜分離裝置;研發排放廢水深度處理的膜技術與膜材料。
3.廢氣綜合利用技術
研發利用酒精等生產過程中產生的二氧化碳生產降解塑料技術。
(九)紡織工業資源綜合利用技術
1.廢舊纖維等廢渣綜合利用技術
(1)推廣廢舊纖維循環利用技術。利用廢舊滌綸及錦綸纖維、生產廢料等生產再生纖維技術。
(2)推廣利用廢舊纖維作為產業用增強材料技術。
(3)推廣溶解、萃取、離子交換等技術,對化纖工業產生的固體廢棄物進行回收利用。
(4)推廣針刺、熱熔、紡粘、縫編等技術對廢花、落棉、紗布角、短纖維等廢棄物進行回收利用。
(5)推進廢棄毛中提取蛋白制備生物蛋白纖維技術的產業化。
(6)推進利用雙氧水對剝繭抽絲後的廢棄物進行濕法紡絲技術的產業化。
(7)推進蠶蛹蛋白提煉及深加工、桑柞蠶絲下腳料生產針刺無紡布等綜合利用產業化。
2.廢水(液)綜合利用技術
(1)推廣採用水蒸汽直接蒸餾法從含溴染料廢水中製取溴素技術;以分散藍2BLN水解母液以及硝化廢酸為原料從廢水中離析回收2,4-二硝基苯酚。
(2)推進洗毛廢水採用高效分離回收等工藝設備提取羊毛脂技術產業化。
(3)推進聚酯企業生產廢水中乙醛等有機物回收與利用技術產業化。
(4)研發適用於排放廢水深度處理的膜材料,並研發適用於漿料、染料濃縮與回收工藝的膜分離裝置。
(十)造紙工業「三廢」綜合利用技術
1.廢渣綜合利用技術
(1)推廣造紙廢渣污泥資源化利用技術。
(2)推進制漿鹼回收白泥生產優質碳酸鈣技術的產業化。
2.廢水(液)綜合利用技術
(1)推廣制漿造紙過程水的梯級使用和廢水深度處理部分回用技術。
(2)推廣造紙白水多圓盤過濾機處理回收利用技術。
(3)推廣厭氧生物處理高濃廢水生產沼氣技術。
(4)推廣制漿封閉式篩選、中濃技術。
(5)推進紙漿廢液生產微生物制劑技術的產業化。
四、再生資源回收利用技術
(一)廢舊金屬再生利用技術
1.推廣採用機械化手段對廢舊汽車、廢舊船舶等機械設備的拆解和利用。
2.推廣黃雜銅直接生產高精度板、帶、管等技術。
3.推廣紫雜銅熔煉除氧、除雜技術以及軋制過程中的表面處理和精整技術。
4.推廣組合式熔煉爐組生產再生鋁合金技術。
5.推廣廢鋁易拉罐鑽切屑利用技術;電解鋁殘極(陽極、陰極)生產石墨化炭陰極技術。
6.推廣廢鉛酸蓄電池機械化拆解、破碎分選技術,分別回收處理塑料殼、鉛極板、含鉛物料(鉛膏)、廢酸液等;再生鉛渣回收錫、銻等有價金屬的技術。
7.研發廢鋼鐵鍍鋅、鍍鉻等鍍層的處理技術;廢高合金鋼的鑒定、檢測和分選技術;混堆狀廢線材加工處理技術及裝備;廢易拉罐等優質廢鋁的保級利用技術。
(二)廢舊家電及電子產品再生利用技術
1.推廣電熱絲等干法分離陰極射線管屏錐玻璃技術。採用工業吸塵器回收並妥善收集熒光粉。
2.推廣加熱析出、催化分解等技術,回收液晶面板上的液晶物質和稀貴金屬銦並做無害化處理。
3.推廣環保型的溶蝕、酸解、電解、精煉等技術,處理晶元等含稀貴金屬的廢料,回收金、銀、鈀等。
4.推廣高效粉碎、分選技術,處理已去除晶元、電容器等部件的線路板,回收銅、玻璃纖維和樹脂等。
5.推廣粉碎、分選等物理方法在密閉的設施中處理含有多溴聯苯、多溴二苯醚等有害成分的電線、電纜,回收銅、鋁和塑料。
6.推廣破碎、分選等物理方法在設置有環保和安全措施的密閉設施中處理廢舊冰箱、空調、冷櫃等製冷電器。
(三)廢舊橡膠、輪胎再生利用技術
1.推廣膠粉活化技術,提高膠粉活性,擴大膠粉利用率。
2.推廣「預硫化和無模硫化翻新」輪胎翻新技術。
3.推廣廢舊橡膠常溫粉碎、濕法粉碎、冷凍粉碎等生產精細膠粉技術。
(四)廢紙板和廢紙再生利用技術
1.推廣廢瓦楞紙箱中高濃連續碎解、纖維分級處理、中高濃篩選、大直徑盤磨打漿技術,生產包裝紙及紙板。
2.推廣高濃篩選、高濃漂白、高濃揉搓等技術,處理廢舊報紙及帶有塗料、印刷油墨等需脫墨的紙張。
3.研發大型廢紙和廢紙板制漿技術及成套設備。
(五)廢塑料再生利用技術
1.推廣廢塑料物理再生利用和機械化分類技術。
2.推廣廢塑料活化無機填料改性、纖維增強改性、彈性體增韌改性、樹脂合金改性、鏈結構改性等化學再生利用技術。
3.推廣利用廢舊聚酯瓶生產聚酯切片技術。
4.推廣利用廢舊塑料、廢棄木質材料生產木塑材料及其製品技術。
(六)廢玻璃再生利用技術
1.推廣廢玻璃作為原料生產平板玻璃、瓶罐器皿等玻璃製品直接再利用技術。
2.推廣廢玻璃生產建築和保溫隔音等材料的間接再生利用技術。
(七)建築廢棄物再生利用技術
1.推廣改性瀝青混合料再生道路材料制備技術及裝備。
2.研發建築垃圾減量化控制技術及建築垃圾再生材料在建築工程中應用的成套技術。
10. 復雜難處理稀有、稀土、貴金屬提取技術體系
主要包括難處理鋰、鈮鉭多金屬共生礦、細粒難選金紅石礦、貴金屬礦(金礦和鉑鈀礦等)的開發利用技術。我國難處理金礦資源比較豐富,現已探明的黃金地質儲量中,約有1000噸左右屬於難處理金礦資源,約占探明儲量的1/4。研究新型組合捕收劑和有效抑制碳吸附金的組合碳抑制劑,排除碳的干擾和消除碳的「劫金」能力;在較低的壓力和溫度條件下的催化氧化浸出新工藝和新葯劑,有效浸出金;難處理金礦無毒浸金葯劑開發技術;研究無害化處理砷或有效回收砷礦物的新工藝技術,變有害為有利,尋找出適宜於這類金礦有效開發利用的合理技術途徑。推廣循環流態化床(GFB)技術焙燒難處理金礦,其工藝過程可以極好地得到控制;能充分地燒去硫和碳;焙燒工藝投資成本降低,金回收率大大提高(一般金總回收率提高5%~15%),可實現清潔焙燒的效果。開發推廣復雜難處理礦石的加壓(常壓)催化氧化浸出技術是環境清潔的生產工藝。可以用於處理含砷碳復雜金精礦等物料。我國在生物冶金、金礦預處理技術方面也取得了長足的發展,建立起幾個工業試驗示範點,推動了我國在這一技術領域的進步和發展,但總體上與世界主要礦業大國的差距較大。當前應重點針對我國低品位原生硫化礦和難處理的硫化物精礦,解決浸礦速度慢與浸出率低的難題,培育馴化高效浸礦菌種,開展過程強化、高效及規模化生產工程等關鍵技術的研究,形成較完整的成套技術,為我國難處理資源的高效、低成本開發利用提供新的技術途徑。我國的鉑鈀礦資源較為緊缺,應加強鉑鈀硫化物的富集技術、鉑鈀精礦浸出技術、高鋶中鉑鈀的富集和提純新工藝流程的研究。
我國的花崗偉晶岩含鋰鈮鉭稀有多金屬礦床,主要鋰礦物有鋰輝石、鋰雲母、磷鋰石、透鋰長石等,品位高,儲量大,並伴生有鈹、鈮、鉭等有用組分。我國鉭鈮礦床主要有花崗岩鉭鈮礦床和高溫沉積變質礦床。花崗偉晶岩礦床一般有用礦物顆粒比較粗大,共生礦物有鋰輝石等。花崗岩鉭鈮礦床是我國重要的鉭鈮礦床工業類型,特點是礦體規模大,鉭鈮礦物粒度較細,其中鈮鐵礦——鉭鈮鐵礦型花崗岩礦床,鉭鈮鐵礦和鈮鐵礦是我國鈮鐵礦的主要來源;鉭鈮錳礦——細晶花崗岩礦床儲量大,品位較高,是鈹、鋰、銣、鋯、鉿、錫、鎢的多種稀有金屬的綜合礦床;鉭鈮鐵礦——鉭鈮錳礦型花崗岩以含鉭鈮鐵礦、鉭鈮錳礦為主,其次有少量細晶石,共生礦物有黑鎢礦、錫石、富鉿鋯石等,也是目前國內鉭鈮主要來源之一;沉積變質高溫熱液交代礦床,儲量很大,但鉭鈮礦物結晶很細,部分呈類質同象或微細顆粒包裹於其他礦物中,選礦回收困難。我國的金紅石礦產資源雖然豐富,但具有較高工業價值的礦床卻很少,已發現的原生金紅石礦成礦區面積很大,但礦石品位低,其儲量佔全國金紅石資源總量的86%,礦石結構緻密、粒度細,可選性差、回收率低,經常需要採用多種選礦工藝來提純富集,如浮選、重選、磁選、電選,有的還需要焙燒或酸洗來提高精礦品位。由於選礦工藝流程長,加工成本高,產品缺乏市場競爭能力,總體規模和產量、質量都難以滿足工業的需求。因此簡化工藝,降低生產成本,提高選礦回收率和礦石綜合利用水平是開發利用我國金紅石資源的關鍵。這些資源的特點均要求加強綜合利用技術研究。
我國稀土儲量和產量均居世界首位。南方離子吸附型稀土是世界上少有的中、重稀土資源,與高新技術產業有密切關系。但由於亂采濫挖,採用落後的池浸工藝,回收率不到30%,資源浪費嚴重,沒有發揮綜合利用的價值同時也帶來環境污染。努力完善和全面推廣原地浸礦新工藝、離子型稀土冶煉技術及設備,是離子型稀土開發利用步入良性發展階段的頭等大事。我國稀土礦總量90%以上集中在包頭的白雲鄂博一礦,白雲鄂博內生輕稀土鐵礦床是含有鐵、稀土、釷、鈮、錳、磷、螢石等的多元素共生礦。目前開採的東礦是貧鐵(品位34%)富稀土(品位5%)礦,稀土的利用率僅10%左右,大量稀土堆存於尾礦庫,稀土氧化物(REO)約1000多萬噸,以白雲鄂博共生礦為代表的北方稀土礦應重點進行鈮、鋯、稀土的選冶聯合分離技術、稀土氧化物清潔生產及資源綜合回收利用工藝研究,提出合理、可行、經濟、環保的選冶工藝。