1. 杠桿原理及公式
杠桿的平衡來條件:動力×動源力臂=阻力×阻力臂。
公式:F1×L1=F2×L2變形式:F1:F2=L1:L2動力臂是阻力臂的幾倍,那麼動力就是阻力的幾分之一。
杠桿靜止不動或勻速轉動都叫做杠桿平衡。
通過力的作用點沿力的方向的直線叫做力的作用線
從支點O到動力F1的作用線的垂直距離L1叫做動力臂
從支點O到阻力F2的作用線的垂直距離L2叫做阻力臂
杠桿平衡的條件(文字表達式):動力×動力臂=阻力×阻力臂
動力臂×動力=阻力臂×阻力,即L1×F1=L2×F2,由此可以演變為F1/F2=L1/L2杠桿的平衡不僅與動力和阻力有關,還與力的作用點及力的作用方向有關。
假如動力臂為阻力臂的n倍,則動力大小為阻力的1/n"大頭沉"
動力臂越長越省力,阻力臂越長越費力.
省力杠桿費距離;費力杠桿省距離。
等臂杠桿既不省力,也不費力。可以用它來稱量。在力學里,典型的杠桿(lever)是置放
2. 杠桿原理及公式
將杠桿原理看作以支點為中心的旋轉運動,就比較容易理解了。動力點或專阻力點的移動距離屬是由以支點為中心的圓的半徑決定的。半徑越長,這個點移動的距離就越長,因為這個點就得沿半徑更長的圓移動了。
距離變化的同時,也伴隨著力的增減。這是因為單純的杠桿原理是通過以下公式成立的:作用於動力點的力×動力點移動的距離=作用於阻力點的力×阻力點移動的距離。(力×力作用的距離)在物理學中叫做「功」,即人做的功和物體被做的功是相等的(能量守恆定律)。
(2)物理化學杠桿原理計算擴展閱讀
在杠桿原理中,我們把杠桿固定的旋轉點稱為「支點」。要想舉起重物,就要把支點置於盡量靠近物體的地方。
假設人施加力的點(動力點)與支點之間的距離達到支點與使物體移動的點(阻力點)之間距離的5倍。那麼,要想撬起地球儀,只需要用地球儀1/5重量的力按壓木板即可。
剪刀、起子、鑷子、筷子、鉗子、桿秤......這些工具都用到了「杠桿原理」。利用杠桿原理,我們可以用很小的力量撬起很重的物體,也可以把短距離移動放大為長距離移動。正因如此,杠桿原理在生活中的應用十分廣泛。
3. 物理化學杠桿原理
物理學史集中地體現了人類探索和逐步認識世界的現象,結構,特性,規律和本質的歷程.隨著科學的發展,我們更要重視物理學。因此小編准備了這篇初二物理知識點歸納:杠桿原理公式的理解,歡迎閱讀。
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如果想要省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在重心理論的基礎上,阿基米德發現了杠桿原理,即二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:動力動力臂=阻力阻力臂,即F1l1=F2l2這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (力臂 力距);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
省力杠桿
L1L2,F1
費力杠桿
L1
等臂杠桿
L1=L2,F1=F2,既不省力也不費力,又不多移動距離,如天平、定滑輪等。
沒有任何一種杠桿既省距離又省力
4. 物理中杠桿的計算公式怎麼理解,怎麼的得到的,什麼原理
杠桿又分稱費力杠來桿、省力杠自桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
杠桿可分為省力杠桿、費力杠桿和等臂杠桿,沒有任何一種杠桿既省距離又省力,這幾類杠桿有如下特徵:
省力杠桿
L1>L2,F1<F2,省力、費距離。
如拔釘子用的羊角錘、鍘刀,開瓶器,軋刀,動滑輪,手推車 剪鐵皮的剪刀及剪鋼筋用的剪刀等。
費力杠桿
L1<L2,F1>F2,費力、省距離。
如釣魚竿、鑷子,筷子,船槳裁縫用的剪刀 理發師用的剪刀等。
等臂杠桿
L1=L2,F1=F2,既不省力也不費力,又不多移動距離,
如天平、定滑輪等。
5. 杠桿原理計算方法
力與力臂乘積相等
F1*L1=F2*L2
力與力臂不垂直時要乘sinQ
F1*L1*sinQ1=F2*L2 *sinQ2
6. 物化杠桿規則
杠桿規則是由物料衡算得出的系統中各部分物質的數量之間的關系。用杠桿規則來解決化學中百分比濃度、溶解度和相平衡的有關計算,比較直觀,列式又簡單,很容易掌握。
設系統中某組分的分子分數為x,如將系統分為分子分數各為x1、x2的兩部分,則它們的摩爾數n1與n2間,必定遵守下列關系:n1/n2=(x2-x)/(x-x1),此關系猶如以x為支點,以x2-x與x-x1為臂長的杠桿的計算公式,故名。如用重量分數,則得重量比。
(6)物理化學杠桿原理計算擴展閱讀
利用規則-屬性
相圖中計算處於平衡狀態的兩相相對數目的規則。設XA和XB表示平衡相中某組分的組分(如摩爾分數),xT表示該組分在體系中的總組分。根據杠桿定律,a和B相的na和NB(摩爾)之比為
Na:NB=(xB-Xt):(XT-XA)。
7. 杠桿計算公式
設動力F1、阻力F2、動力臂長度L1、阻力臂長度L2,則
杠桿原理關系式為:F1L1=F2L2
可有以下四種變換式:
F1=F2L2/L1
F2=F1L1/L2
L1=F2L2/F1
L2=F1L1/F2
杠桿五要素:
1、支點:杠桿繞著轉動的點,通常用字母O來表示。
2、動力:使杠桿轉動的力,通常用F1來表示。
3、阻力:阻礙杠桿轉動的力,通常用F2來表示。
4、動力臂:從支點到動力作用線的距離,通常用L1表示。
5、阻力臂:從支點到阻力作用線的距離,通常用L2表示。
(註:動力作用線、阻力作用線、動力臂、阻力臂皆用虛線表示。力臂的下角標隨著力的下角標而改變。例:動力為F3,則動力臂為L3;阻力為F5,阻力臂為L5。)
(7)物理化學杠桿原理計算擴展閱讀:
杠桿的平衡條件 :
動力×動力臂=阻力×阻力臂
公式:
F1×L1=F2×L2變形式:
F1:F2=L2:L1動力臂是阻力臂的幾倍,那麼動力就是阻力的幾分之一。
公式:
F1×L1=F2×L2一根硬棒能成為杠桿,不僅要有力的作用,而且必須能繞某固定點轉動,缺少任何一個條件,硬棒就不能成為杠桿,例如酒瓶起子在沒有使用時,就不能稱為杠桿。
動力和阻力是相對的,不論是動力還是阻力,受力物體都是杠桿,作用於杠桿的物體都是施力物體。
8. 杠桿原理的計算公式!在線等!!!!!!!!!
F1*L1=F2*L2力乘以力臂等於力乘以力臂
杠桿平衡條件:F1*l1=F2*l2。
力臂:從支點到力的作用線的垂直距離
杠桿平衡是指杠桿處於靜止狀態下或者勻速轉動的狀態下
(8)物理化學杠桿原理計算擴展閱讀:
杠桿可以讓「小力」做出「大力」能做的功。
任何機械所輸出的能量,都不可能比輸入它的能量還多,這是「能量守恆定律」的要求。因此,對於一個理想的機械,它的「能量輸出」最多與「能量輸入」是相等的,這個時候,機械所輸出的功,等於輸入它的功。
可以想像一個用杠桿來翹起物體的例子。在過程中,杠桿所輸出的功,是「物體的重量」與「物體被抬起的高度」(或者說「輸出距離」)的乘積。而輸入杠桿的功,則是人所施加的「力」與「向下壓的距離」(或者說「輸入距離」)的乘積。
在理想的情況下,「輸出的功」與「輸入的功」相等,也就是「物體的重量」與「輸出距離」的乘積,等於「力」與「輸入距離」的乘積。這就意味著,在物體的重量一定的前提下,「力」的大小取決於「輸入距離」與「輸出距離」的比例。
通過調整「力」和「物體」與「支點」的相對遠近,使「輸入距離」大於「輸出距離」,或者對於上面的例子來說,只要讓下壓的距離稍大於物體需要被抬起來的距離,那麼用「小力」所做出來的功,便完全可以等同於一個「大力」所做的功。能夠看出,這就是杠桿省力的背後的原因。
參考資來源:杠桿原理
9. 杠桿原理是怎麼算的,比如要翹起一個1噸重的東西要怎麼算,求列公式一步步算。謝謝。
杠桿原理的平衡公式是 力1*力臂1=力2*力臂2
m1g*L1=m2g*L2
已知m1要計算m2必須知道支點的位置
當支點在正中間時
那麼L1/L2=1
這種情況下m2=m1*L1/L2=m1
同樣需要1000kg*9.8N/kg=9800N的力才能撬動