『壹』 物理「杠桿,滑輪,動滑輪,滑輪組」的特點!
除定滑輪外【定滑輪】滑輪的軸固定不動,它實質上是一個等臂杠桿。動力臂和阻力臂都是滑輪的半徑r,根據杠桿原理Fr1=Wr2。它的機械利益為
變了動力的方向,如要把物體提到高處,本應用向上的力,如利用定滑輪,就可以改用向下的力,因而便於工作。
【動滑輪】滑輪的軸和重物一起移動的滑輪。它實質上是一個動力臂二倍於阻力臂的杠桿。根據杠桿平衡的原理Wr=F·2r,它的機械利
改變用力的方向。其方向是與物體移動的方向一致。
【滑輪組】動滑輪和定滑輪組合在一起叫「滑輪組」。因為動滑輪能夠省力,定滑輪能改變力的方向,若將幾個動滑輪和定滑輪搭配合並而成滑輪組,既可以改變力的大小,又能改變力的方向。普通的滑輪組是由數目相等的定滑輪和動滑輪組成的。而這些滑輪或者是上下相間地坐落在同一個輪架(或叫「輪轅」),或者是左右相鄰地裝在同一根軸心上。繩子的一端固定在上輪架上,即相當於系在一個固定的吊掛設備上,然後依次將繩子繞過每一個下面的動滑輪和上面的定滑輪。在繩子不受拘束的一端以F力拉之,被拉重物掛在活動的輪架上。對所有各段繩子可視為是互相平行的,當拉力與重物平衡時,則重物W必平均由每段繩子所承擔。若有n個定滑輪和n個動滑輪時,
且為勻速運動時,則所需之F力的大小仍和上面一樣。因此,在提升重物時才能省力。其傳動比乃為F∶W=1∶2n。注意,在使用滑輪組時,不能省功,只能省力,但省力是以多耗距離(即行程)為前題的。
前邊所分析的定滑輪、動滑輪以及滑輪組,都是在不計滑輪重力,滑輪與軸之間的摩擦阻力的情況下得出的結論。但在使用時,實際存在輪重和摩擦阻力,所以實際用的力要大些。
『貳』 為什麼滑輪的實質是杠桿
定滑輪實質是等臂杠桿,不省力也不費力,但可以改變作用力方向。杠桿的動力臂和阻力臂分別是滑輪的半徑,由於半徑相等,所以動力臂等於阻力臂,杠桿既不省力也不費力。
定滑輪不能省力,而且在繩重及繩與輪之間的摩擦不計的情況下,細繩的受力方向無論向何處,吊起重物所用的力都相等,因為動力臂和阻力臂都相等且等於滑輪的半徑。
動滑輪省1/2力多費1倍距離,這是因為使用動滑輪時,鉤碼由兩段繩子吊著,每段繩子只承擔鉤碼重的一半,而且不能改變力的方向。實質是個動力臂(L1)為阻力臂(L2)二倍的杠桿。
(2)杠桿滑輪解析擴展閱讀
使用中,省力多少和繩子的繞法,決定於滑輪組的使用效果。
繞繩的原則是:當定滑輪和動滑輪數量相等時,繩子的自由端可以從動滑輪出來,也可以從定滑輪出來,而且從定滑輪出來時,繩子的固定端掛在定滑輪上;
從動滑輪出來時,繩子的固定端掛在動滑輪上。定滑輪和動滑輪數量差不會超過1。他們數量不相等時,繩子的自由端從多的那一邊出來,繩子的固定端掛在少的那一邊。
動滑輪一定時,當繩子的固定端掛在動滑輪上時,滑輪組要比繩子的固定端掛在定滑輪時省力(因為有更多段繩子承擔物重)。
使用滑輪組時,重物有幾條繩索承受,提起物體所用的力就是物重的幾分之一。
『叄』 用杠桿的原理分析滑輪
定滑輪的支點在軸心。定滑輪在輪子與繩子的邊緣。
『肆』 關於杠桿和滑輪的知識點。。
杠桿 、滑輪知識點總結李偉志的工作室杠桿滑輪知識點總結
1.杠桿:一根在力的作用下能繞著固定點轉動的硬 棒就叫杠桿。
2.什麼是支點、動力、阻力、動力臂、阻力臂?
(1)支點:杠桿繞著轉動的點(o)
(2)動力:使杠桿轉動的力(F1)
(3)阻力:阻礙杠桿轉動的力(F2)
(4)動力臂:從支點到動力的作用線的距離(L1)。
(5)阻力臂:從支點到阻力作用線的距離(L2)
3.杠桿平衡的條件:動力×動力臂=阻力×阻力臂.或寫作:F1L1=F2L2 或寫成 。這個平衡條件也就是阿基米德發現的杠桿原理。
4.三種杠桿:
(1)省力杠桿:L1>L2,平衡時F1<F2。特點是省力,但費距離。(如剪鐵剪刀,鍘刀,起子)
(2)費力杠桿:L1<L2,平衡時F1>F2。特點是費力,但省距離。(如釣魚杠,理發剪刀等)
(3)等臂杠桿:L1=L2,平衡時F1=F2。特點是既不省力,也不費力。(如:天平)
5.定滑輪特點:不省力,但能改變動力的方向。(實 質是個等臂杠桿)
6.動滑輪特點:省一半力,但不能改變動力方向,要費距離.(實質是動力臂為阻力臂二倍的杠桿)
7.滑輪組:使用滑輪組時,滑輪組用幾段繩子吊著物體,提起物體所用的力就是物重的幾分之一。
8.實際滑輪組:機械效率η = W有用功/W總功 = Gh/Fs = G / nF,n為承擔物重的繩子段數。
9.忽略繩重和摩擦的滑輪組:η =G物*h /(G物*h+G動*h) = G /(G +G動),
拉力:F=(G +G動)/n
『伍』 怎樣用杠桿原理解釋動滑輪省力的現象
把動滑輪運動的每一時刻剪輯,看成是杠桿,阻力臂長度不變,動力臂長度根據繩子的作用力方向變化,可知,動力臂長度最大時為阻力臂長度的2倍,得一個動滑輪最多剩1/2的力.
『陸』 哪位詳細講解一下 滑輪和杠桿的關系
兩者都是簡單機械,有著省力和改變力的方向的優點,二者的本質都是一樣的;不同點是滑輪能連續改變力的方向和大小,而杠桿則只能移動一定距離和方向
『柒』 什麼叫滑輪的杠桿示意圖
定,動滑輪都是杠桿,在初二物理課本里有詳細的圖與解釋
『捌』 利用杠桿的原理解釋定滑輪與動滑輪的作用
郁悶.書上沒有么.
定滑輪你以那個圓心為支點,分別作出力臂,力臂相等,力矩相等,不能省力.
動滑輪你以旁邊的為支點,一力臂是另一個的兩倍.
『玖』 杠桿、斜面、滑輪、輪軸、定滑輪、動滑輪的原理
一、杠桿原理
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。
即:動力×動力臂=阻力×阻力臂,用代數式表示為F1·L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,要使杠桿達到平衡,動力臂是阻力臂的幾倍,阻力就是動力的幾倍。
二、斜面原理
斜面(inclined plane)是一種傾斜的平板,能夠將物體以相對較小的力從低處提升至高處,但提升這物體的路徑長度也會增加。斜面是古代希臘人提出的六種簡單機械之中的一種。
假若斜面的斜率越小,即斜面與水平面之間的夾角越小,則需施加於物體的作用力會越小,但移動距離也越長;反之亦然。假設移動負載不會造成能量的儲存或耗散,則斜面的機械利益是其長度與提升高度的比率。
在日常生活中,時常會使用到斜面。行駛車輛的坡道是一種常見的斜面;卡車裝載大型貨物時,常會在車尾斜搭一塊木板,將貨物從木板上往上推,所應用的也是斜面的理論。
三、滑輪原理
滑輪主要的功能是牽拉負載、改變施力方向、傳輸功率等等。多個滑輪共同組成的機械稱為「滑輪組」,或「復式滑輪」。滑輪組的機械利益較大,可以牽拉較重的負載。滑輪也可以成為鏈傳動或帶傳動的組件,將功率從一個旋轉軸傳輸到另一個旋轉軸。
四、輪軸原理
輪軸的實質是可以連續旋轉杠桿.使用輪軸時,一般情況下作用在輪上的力和軸上的力的作用線都與輪和軸相切,因此,它們的力臂就是對應的輪半徑和軸半徑.
由於輪半徑總大於軸半徑,因此當動力作用於輪時,輪軸為省力費距離杠桿(下面的第一幅圖),實際的例子:有自行車腳踏與輪盤(大齒輪)是省力輪軸.當動力作用於軸上時,輪軸為費力省距離杠桿,實際的例子有:自行車後輪與輪上的飛盤(小齒輪)、吊扇的扇葉和軸都是費力輪軸的應用。
五、定滑輪原理
使用時,滑輪的位置固定不變;定滑輪實質是等臂杠桿,不省力也不費力,但可以改變作用力方向.杠桿的動力臂和阻力臂分別是滑輪的半徑,由於半徑相等,所以動力臂等於阻力臂,杠桿既不省力也不費力。
定滑輪不能省力,而且在繩重及繩與輪之間的摩擦不計的情況下,細繩的受力方向無論向何處,吊起重物所用的力都相等,因為動力臂和阻力臂都相等且等於滑輪的半徑。
六、動滑輪原理
動滑輪省1/2力多費1倍距離,這是因為使用動滑輪時,鉤碼由兩段繩子吊著,每段繩子只承擔鉤碼重的一半,而且不能改變力的方向。實質是個動力臂(L1)為阻力臂(L2)二倍的杠桿:圖中,O是支點,F1是提升物體的動力,F2是物體的重力(也可理解為不用機械時提升物體用的力)。
『拾』 滑輪的本質是杠桿原理嗎
是,定滑輪的本質是一個動力臂等於阻力臂的等臂杠桿,他既不省力也不費力,但可以改變力的方向。動滑輪的本質是一個動力臂是兩倍阻力臂的省力杠桿,他可以省一半力。