㈠ 杠桿由什麼什麼什麼三部分組成
杠桿由動力臂、阻力臂、支點三部分組成。
從動力到支點的杠桿部分是動力臂,從阻力到支點的杠桿部分是阻力臂。
支點是杠桿中間可以讓杠桿繞著這個點轉動的點。
(1)杠桿原理要素擴展閱讀:
杠桿是一種簡單機械。
在力的作用下能繞著固定點轉動的硬棒就是杠桿。
在生活中根據需要,杠桿可以是任意形狀。
蹺蹺板、剪刀、扳子、撬棒、釣魚竿等,都是杠桿。
滑輪是一種變形的杠桿,定滑輪的實質是等臂杠桿,動滑輪的實質是阻力臂是動力臂一半的省力杠桿。
杠桿五要素:
支點:杠桿繞著轉動的點,通常用字母O來表示。
動力:使杠桿轉動的力,通常用F1來表示。
阻力:阻礙杠桿轉動的力,通常用F2來表示。
動力臂:從支點到動力作用線的距離,通常用L1表示。
阻力臂:從支點到阻力作用線的距離,通常用L2表示。
杠桿的平衡條件 :
動力×動力臂=阻力×阻力臂
1、在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;
2、在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;
3、在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下傾;
4、一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。
相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替;似圖形的重心以相似的方式分布,正是從這些公理出發,在"重心"理論的基礎上,阿基米德又發現了杠桿原理,即"二重物平衡時,它們離支點的距離與重量成反比。
㈡ 杠桿的四要素
三點、二力、二臂。
三點:支點O、動力作用點、阻力作用點
二力:動力、阻力
二臂:動力臂、阻力臂(支點到動力作用線的垂直距離)
㈢ 杠桿原理
杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(動力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1• L1=F2•L2。式中,F表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:支點到受力點距離(力矩) * 受力 = 支點到施力點距離(力臂) * 施力,這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (力臂 > 力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 > 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,我就能把地球挪動!"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
㈣ 杠桿的五要素是什麼
杠桿五要素是:
1、動力:使杠桿轉動的力,通常用F1來表示。
2、阻力:阻礙杠桿轉動的力,通常用F2來表示。
3、支點:杠桿繞著轉動的點,通常用字母O來表示。
4、阻力臂:從支點到阻力作用線的距離,通常用L2表示。
5、動力臂:從支點到動力作用線的距離,通常用L1表示。
杠桿是一種簡單機械。
在力的作用下能繞著固定點轉動的硬棒就是杠桿。
在生活中根據需要,杠桿可以是任意形狀。
蹺蹺板、剪刀、扳子、撬棒、釣魚竿等,都是杠桿。
滑輪是一種變形的杠桿,定滑輪的實質是等臂杠桿,動滑輪的實質是阻力臂是動力臂一半的省力杠桿。
㈤ 杠桿原理畫出五要素謝謝
一個支點(轉動軸),二個力臂,二個力——這是杠桿五要素。
別人給個提示,請你自己在圖上畫,學知識要靠自己動腦動手。
㈥ 杠桿原理是什麼
初中物理學中把一根在力的作用下可繞固定點轉動的硬棒叫做杠桿。
㈦ 杠桿原理的原因
杠桿原理得出的根據其實是轉動力矩平衡。對於物體的旋轉,影響因素有三個:一個是力臂專(屬力的作用線到轉軸的距離)一個是力的大小,還有物體的轉動慣量。這是由控制變數實驗得出的。這就和物體的平動中一樣,和牛頓第二定律表明加速度和質量還有力的大小有關一樣。