1. 小桿秤的杠桿三要素
桿秤是一種杠桿,拿比原來小的秤砣稱東西比實際上重量數字是增加了,但實際重量是沒有變化!這也是奸商慣用的俗稱「耍小稱」的坑人辦法。
2. 杠桿原理
杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(動力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1• L1=F2•L2。式中,F表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:支點到受力點距離(力矩) * 受力 = 支點到施力點距離(力臂) * 施力,這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿 (力臂 > 力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機 (力矩 > 力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,我就能把地球挪動!"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
3. 杠桿原理是什麼
初中物理學中把一根在力的作用下可繞固定點轉動的硬棒叫做杠桿。
4. 力矩的三要素和力矩的求法
力矩的三要素是:大小、方向、力臂長度。力矩的求法:M=LxF。
力矩在物理學里是指作用力使物體繞著轉動軸或支點轉動的趨向。力矩的單位是牛頓-米。雖然牛頓與米的次序,在數學上,是可以變換的。
力使物體轉動的效果不僅跟力的大小有關,還跟力臂有關,即力對物體的轉動效果決定於力矩。當臂等於零時,不論作用力多麼大,對物體都不會產生轉動作用。
當作用力與轉動軸平行時,不會對物體產生轉動作用,計算力矩,關鍵是找力臂。需注意力臂是轉動軸到力的作用線的距離,而不是轉動軸到力的作用點的距離。
(4)線索杠桿模型三要素擴展閱讀:
力矩是改變轉動物體的運動狀態的物理量,門、窗等轉動物體從靜止狀態變為轉動狀態或從轉動狀態變為靜止狀態時,必須受到力的作用。
但是,若將力作用在門、窗的轉軸上,則無論施加多大的力都 不會改變其運動狀態,可見轉動物體的運動狀態和變化不僅與力的大小有關,還受力的方向、力的作用點的影響。
力的作用點離轉軸越遠,力的方向與轉軸所在平面越趨於垂直,力使轉動物體運動狀態變化得就越明顯。
物理學中力的作用點和力的作用方向對轉動物體運動狀態變化的影響,用力矩這個物理量綜合表示,因此,力矩被定義為力與力臂的乘積。
力矩概括了影響轉動物體運動狀態變化的所有規律,力矩是改變轉動物體運動狀態的物理量。
5. 如何利用杠桿的原理繩子和長木棍 將重物 抬起來
一.
導入
講述:阿基米德的故事
問:要幫助阿基米德實現他的設想,我們要提供哪些最基本的條件?
二.
新授
1、杠桿三要素。
生討論回答:支點、長棍、用力點。
師:由此可見,要使木棍成為杠桿必須滿足三個要素:支點、動力點、阻力點。
1.
將重物抬起來
師:根據大家的討論結果,想辦法利用繩子和木棍製作一種簡單機械,將重物輕易的抬起來。
學生實驗製作,記錄。
匯報交流。
交流小結:實驗中能繞一個支點旋轉的棍子就成為杠桿。
認識杠桿的三個點:動力點、支點、阻力點。
在自己的記錄表中標明杠桿的三個點。
2、怎樣使杠桿保持平衡
出示杠桿尺,簡單介紹。
提出探究任務:怎樣使杠桿尺保持平衡?
小組討論,涉及探究的方法過程並簡單記錄。
匯報交流,完善研究方法。
6. 生活中所有杠桿模型的共同點
一定會有支點 一個作用力
7. 杠桿的三要素是哪三個
力,力臂、支點,是杠桿的三要素。
說五要素的時候,是把力分為:動力、阻力,
把力臂分為:動力臂,阻力臂。
不明追問。
8. 杠桿由什麼什麼什麼三部分組成
杠桿由動力臂、阻力臂、支點三部分組成。
從動力到支點的杠桿部分是動力臂,從阻力到支點的杠桿部分是阻力臂。
支點是杠桿中間可以讓杠桿繞著這個點轉動的點。
(8)線索杠桿模型三要素擴展閱讀:
杠桿是一種簡單機械。
在力的作用下能繞著固定點轉動的硬棒就是杠桿。
在生活中根據需要,杠桿可以是任意形狀。
蹺蹺板、剪刀、扳子、撬棒、釣魚竿等,都是杠桿。
滑輪是一種變形的杠桿,定滑輪的實質是等臂杠桿,動滑輪的實質是阻力臂是動力臂一半的省力杠桿。
杠桿五要素:
支點:杠桿繞著轉動的點,通常用字母O來表示。
動力:使杠桿轉動的力,通常用F1來表示。
阻力:阻礙杠桿轉動的力,通常用F2來表示。
動力臂:從支點到動力作用線的距離,通常用L1表示。
阻力臂:從支點到阻力作用線的距離,通常用L2表示。
杠桿的平衡條件 :
動力×動力臂=阻力×阻力臂
1、在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;
2、在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;
3、在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下傾;
4、一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。
相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替;似圖形的重心以相似的方式分布,正是從這些公理出發,在"重心"理論的基礎上,阿基米德又發現了杠桿原理,即"二重物平衡時,它們離支點的距離與重量成反比。
9. 怎麼做個關於杠桿的科學小模型
(1)取一根長寬適中的均勻薄木條,從木條中點開始向兩端畫上等間距刻度線。在中點處鑽一個孔,用細線將木條懸掛在支架上即成一杠桿。如果懸後不水平,則可在翹起端繞上金屬絲(或卷上膠布、粘上橡皮泥)調成水平。
鉤碼可用裝有細砂的青黴素葯瓶代替。
(2)在薄木條的中心挖一圓孔,圓孔內嵌進一段玻璃管。在支架上釘一銼成夾劈形的鐵釘,將玻璃管套在鐵釘上,再將杠桿調平衡即可。
(3)也可直接用學生的刻度尺(學生尺),放在三棱木塊的棱上代替杠桿,用相同質量的硬幣(或棋子)代替鉤碼進行實驗,,效果也很好。
10. 杠桿怎麼判斷
筷子(費力杠桿)、火鉗(費力杠桿)、鍋鏟(費力杠桿)、起子(省力杠桿)