⑴ 等臂杠桿例子2個!
蹺蹺板;天平;定滑輪......
阿基米德在《論平面圖形的平衡》一書中最早提出了杠桿原理。他首先把杠桿實際應用中的一些經驗知識當作"不證自明的公理",然後從這些公理出發,運用幾何學通過嚴密的邏輯論證,得出了杠桿原理。這些公理是:(1)在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;(2)在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;(3)在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下傾;(4)一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替;似圖形的重心以相似的方式分布……正是從這些公理出發,在"重心"理論的基礎上,阿基米德又發現了杠桿原理,即"二重物平衡時,它們離支點的距離與重量成反比。"
⑵ 等臂杠桿
還有天平中央的摩擦力
你所說的是理想狀態下的受力公式
在現實中你要考慮摩擦力、阻力、引力、風力。
⑶ 生活中的等臂杠桿有哪些
還有扁擔.
鑷子不是等臂杠桿.它是重點到支點的距離大於支點到力點的費力杠桿.
⑷ 等臂杠桿有哪些
等臂杠桿有以下這些:
1、等臂杠桿:天平,定滑輪,蹺蹺板、衣裳掛、掛鍾等。
2、省力杠桿:瓶器、榨汁器、胡桃鉗、撬棍、扳手、鉗子、拔釘器、開瓶器、鐵皮剪刀、鋼絲鉗、指甲剪、汽車方向盤等。
3、費力杠桿:胳膊,鑷子,魚竿,筷子,火鉗等。
在力的作用下能繞著固定點轉動的硬棒就是杠桿。
在生活中根據需要,杠桿可以是任意形狀。
蹺蹺板、剪刀、扳子、撬棒、釣魚竿等,都是杠桿。
滑輪是一種變形的杠桿,定滑輪的實質是等臂杠桿,動滑輪的實質是阻力臂是動力臂一半的省力杠桿。
杠桿五要素:
支點:杠桿繞著轉動的點,通常用字母O來表示。
動力:使杠桿轉動的力,通常用F1來表示。
阻力:阻礙杠桿轉動的力,通常用F2來表示。
動力臂:從支點到動力作用線的距離,通常用L1表示。
阻力臂:從支點到阻力作用線的距離,通常用L2表示。
⑸ 等臂杠桿的簡介
古希臘科學家阿基米德有這樣一句流傳千古的名言:假如給我一個支點,我就能把地球撬起來!這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
阿基米德在《論平面圖形的平衡》一書中最早提出了杠桿原理。他首先把杠桿實際應用中的一些經驗知識當作不證自明的公理,然後從這些公理出發,運用幾何學通過嚴密的邏輯論證,得出了杠桿原理。這些公理是:(1)在無重量的桿的兩端離支點相等的距離處掛上相等的重量,它們將平衡;(2)在無重量的桿的兩端離支點相等的距離處掛上不相等的重量,重的一端將下傾;(3)在無重量的桿的兩端離支點不相等距離處掛上相等重量,距離遠的一端將下傾;(4)一個重物的作用可以用幾個均勻分布的重物的作用來代替,只要重心的位置保持不變。相反,幾個均勻分布的重物可以用一個懸掛在它們的重心處的重物來代替;似圖形的重心以相似的方式分布……正是從這些公理出發,在重心理論的基礎上,阿基米德又發現了杠桿原理,即二重物平衡時,它們離支點的距離與重量成反比。
⑹ 關於等臂杠桿
杠桿的原理都是:動力臂*動力=阻力臂*阻力
等臂杠桿是因為動力臂=阻力臂,才使動力=阻力的
樓主犯了先後的理解錯誤,把本末倒置了
這樣說你應該能理解了吧^_^
⑺ 等臂杠桿有哪些
天平,稱
⑻ 生活中有哪些省力杠桿和費力杠桿還有等臂杠桿~
1、省力杠桿:來瓶器、榨源汁器、胡桃鉗、撬棍、扳手、鉗子、拔釘器、開瓶器、鐵皮剪刀、鋼絲鉗、指甲剪、汽車方向盤等。
2、等臂杠桿:天平,定滑輪,蹺蹺板、衣裳掛、掛鍾等。
3、省力杠桿由力的作用線到支點的距離叫做力臂。根據公式F1L1=F2L2可得,力臂越長力就越小。省力杠桿,顧名思義,其動力臂較長,動力較小,所以省力。但是通常省力杠桿省了力氣會相應的費距離。等臂杠桿是杠桿的一種,動力臂和阻力臂長度相同,既不省力也不費力,既不省距離也不費距離。
(8)等臂杠桿20個擴展閱讀:
1、省力杠桿
省力杠桿動力臂大於阻力臂,平衡時動力小於阻力。雖然省力,但是費了距離。<也就是說當力臂的長度(以支點O為分界線)大於阻力臂的長度時,這便是省力杠桿。
2、等臂杠桿
在我國歷史上也早有關於杠桿的記載。戰國時代的墨家曾經總結過這方面的規律,在《墨經》中就有兩條專門記載杠桿原理的。這兩條對杠桿的平衡說得很全面。裡面有等臂的,有不等臂的;有改變兩端重量使它偏動的,也有改變兩臂長度使它偏動的。
⑼ 等臂杠桿公式
杠桿的平衡條件:動力×動力臂=阻力×阻力臂。
公式:F1×L1=F2×L2變形式:F1:F2=L1:L2動力臂是阻力臂的幾倍,那麼動力就是阻力的幾分之一。
杠桿靜止不動或勻速轉動都叫做杠桿平衡。
通過力的作用點沿力的方向的直線叫做力的作用線
從支點O到動力F1的作用線的垂直距離L1叫做動力臂
從支點O到阻力F2的作用線的垂直距離L2叫做阻力臂
杠桿平衡的條件(文字表達式):動力×動力臂=阻力×阻力臂
動力臂×動力=阻力臂×阻力,即L1×F1=L2×F2,由此可以演變為F1/F2=L1/L2杠桿的平衡不僅與動力和阻力有關,還與力的作用點及力的作用方向有關。
假如動力臂為阻力臂的n倍,則動力大小為阻力的1/n"大頭沉"
動力臂越長越省力,阻力臂越長越費力.
省力杠桿費距離;費力杠桿省距離。
等臂杠桿既不省力,也不費力。可以用它來稱量。在力學里,典型的杠桿(lever)是置放
⑽ 省力杠桿,費力杠桿,等臂杠桿的例子
1、省力杠桿:在省力的同時,費距離。動力(作用點)移動的距離大,而阻力(專作用點)移動的距離屬小。
如撬棒,羊角錘,開瓶器,核桃夾等。
2、費力杠桿:不能省力,但能省距離。動力(作用點)移動的距離小,而阻力(作用點)移動的距離大。
如筷子,釣魚竿,鑷子,食品夾等。
3、等臂杠桿:既不能省力,也不能省距離。動力(作用點)移動的距離和阻力(作用點)移動的距離相等。
如天平,蹺蹺板等。
杠桿的分類判斷條件:
1、若l1=l2,則F1=F2,這種杠桿叫做等臂杠桿;
2、若l1>l2,則F1<F2,這種杠桿叫做省力杠桿;
3、若l1<l2,則F1>F2,這種杠桿叫做費力杠桿。
杠桿五要素:
1、支點:杠桿繞著轉動的點,用字母O 表示。
2、動力:使杠桿轉動的力,用字母F1表示。
3、阻力:阻礙杠桿轉動的力,用字母F2表示。
說明:動力、阻力都是杠桿的受力,所以作用點在杠桿上。動力、阻力的方向不一定相反,但它們使杠桿的轉動的方向相反 。
4、動力臂:從支點到動力作用線的距離,用字母l1表示。
5、阻力臂:從支點到阻力作用線的距離,用字母l2表示。