A. 對於小學生來講,杠桿的原理是什麼
力乘以桿的長度等於另一邊的力乘以桿的長度 就是說你這邊長了你費的力小
B. 誰能給我解釋一下什麼是杠桿原理
杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(動力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1•
L1=F2•L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:支點到受力點距離(力矩)
*
受力
=
支點到施力點距離(力臂)
*
施力,這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿
(力臂
>
力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機
(力矩
>
力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
C. 關於杠桿原理的講解,越詳細越好!!
杠桿原理
杠桿是一種簡單機械;一根結實的棍子(最好不會彎又非常輕),就能當作一根杠桿了。上圖中,方形代表重物、圓形代表支持點、箭頭代表用力點,這樣,你看出來了吧?(圖1)中,在杠桿右邊向下用力,就可以把左方的重物抬起來了;在(圖2)中,在杠桿右邊向上用力,也能把重物抬起來;在(圖3)中,支點在左邊、重物在右邊,力點在中間,向上用力,也能把重物抬起來。
你注意到了嗎?在(圖1)中,支點在杠桿中間,物理學里,把這類杠桿叫做第一種杠桿;(圖2)是重點在中間,叫做第二種杠桿;(圖3)是力點在中間,叫做第三種杠桿。
第一種杠桿例如:剪刀、釘鎚、拔釘器……這種杠桿可能省力可能費力,也可能既不省力也不費力。這要看力點和支點的距離(圖1):力點離支點愈遠則愈省力,愈近就愈費力;如果重點、力點距離支點一樣遠,就不省力也不費力,只是改變了用力的方向。
第二種杠桿例如:開瓶器、榨汁器、胡桃鉗……這種杠桿的力點一定比重點距離支點遠,所以永遠是省力的。
第三種杠桿例如:鑷子、烤肉夾子、筷子……
這種杠桿的力點一定比重點距離支點近,所以永遠是費力的。
如果我們分別用花剪(刀刃比較短)和洋裁剪刀(刀刃比較長)來剪紙板,花剪較省力但是費時;而洋裁剪則費力但是省時。
D. 誰能給我講講杠桿原理
一個平衡的杠桿(不一定要水平,只要不動或者保持勻速運動就行):
確定一個支點O(任何受力的點都可以,選最好算的)
在杠桿上正好有兩個作用力F1和F2,過O作F1 F2所在支線的垂線,長度為L1 和L2,這就是所謂的動力和阻力,動力臂和阻力臂(其實是人為確定的)
有關系式F1×L1=F2×L2
以上是初中物理的定義,更高級、更嚴謹的在下面,簡單來說就是:
設杠桿繞支點O隨意轉動,則順時針方向的力的總和等於逆時針方向力的總和。
所以不一定要求兩個力分別在支點的兩側,只需要順時針力做的功等於逆時針做的力的負功就可以是杠桿保持平衡。
從這個方面又可以將杠桿原理推廣到滑輪、差動滑輪等等。
E. 關於杠桿原理的講解,簡介一下什麼是杠桿原理,具體的
關於杠桿原理抄的講襲解,簡介一下什麼是杠桿原理,具體的
1、什麼是杠桿:能夠繞固定點轉動的硬棒(物體).
2、杠桿中的「三點、兩力、兩力臂」:
「三點」:支點——杠桿繞著轉動的固定點.常用O表示.
動力作用點——動力在杠桿上的作用位置.
阻力作用點——阻力在杠桿上的作用位置.
「兩力」:動力——使杠桿轉動的力.常用F1表示.
阻力——阻礙杠桿轉動的力.常用F2表示.
「兩力臂」:動力臂——支點到動力作用線的距離.常用L1表示.
阻力臂——支點到阻力作用線的距離.常用L2表示.
(力的作用線——過力的作用點沿力的方向的直線.)
3、杠桿的平衡條件(原理):作用在杠桿上的力與它們的力臂成反比.即:
動力×動力臂=阻力×阻力臂 或 動力/阻力=阻力臂/動力臂
數學表達式:F1×L1=F2×L2 或 F1/F2=L2/L1
4、杠桿的分類:a、省力杠桿:在F1×L1=F2×L2中,L1>L2,則F1<F2;
b、費力杠桿:在F1×L1=F2×L2中,L1<L2,則F1>F2;
c、等臂杠桿:在F1×L1=F2×L2中,L1=L2, 則F1=F2.
F. 小學數學杠桿原理是什麼
杠桿原理的最早發現者, 一般認為是古希臘的阿基米德, 但事實並非如此,先秦的墨子, 本名墨翟, 才是最早的發現者;也就是說杠桿原理的最早發現者是中國人, 不是古希臘人
據說, 阿基米德在《論平面圖形的平衡》一書中用公理的形式描述了杠桿原理, 但阿基米德生卒年為公元前287年—公元前212年, 相當於秦滅六國前後
墨子約出生在春秋末年(約公元前480年),一說公元前476年, 《墨子》的《墨經》中對杠桿原理有詳細而精確的描述
《墨經》約完成於周安王14年 癸巳(公元前388年)。《墨經》,又稱《墨辯》。是《墨子》的一部分
《墨經》比《論平面圖形的平衡》要早一百多年
另外,
《墨子》也好, 《墨經》也好, 都傳承有序, 是確鑿的先秦歷史文獻, 但阿基米德的著作則來歷不明, 最早發現於文藝復興時期,
離阿基米德的時代, 相去約一千五百年, 其最早的版本是從阿拉伯文翻譯成拉丁文的抄本, 連阿拉伯文的版本都沒有, 更不要說古希臘文的版本了,
到底是不是阿基米德的著作? 甚至是不是古希臘的文獻, 都以不可考
嚴格來說只能算傳說而已, 就好比《黃帝內經》,說是黃帝與岐伯雷公等人的談話記錄,但現在大家都認為是後人的託名之作,真實作者已不可考
G. 杠桿原理是什麼能不能說的簡單一些,因為我只是一名六年級的小學生。
杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力(動力點、支點和阻力點)的大小跟它們的力臂成反比。動力×動力臂=阻力×阻力臂,用代數式表示為F1•
L1=F2•L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
概念分析
[編輯本段]
在使用杠桿時,為了省力,就應該用動力臂比阻力臂長的杠桿;如欲省距離,就應該用動力臂比阻力臂短的杠桿。因此使用杠桿可以省力,也可以省距離。但是,要想省力,就必須多移動距離;要想少移動距離,就必須多費些力。要想又省力而又少移動距離,是不可能實現的。正是從這些公理出發,在「重心」理論的基礎上,阿基米德發現了杠桿原理,即「二重物平衡時,它們離支點的距離與重量成反比。
杠桿的支點不一定要在中間,滿足下列三個點的系統,基本上就是杠桿:支點、施力點、受力點。
其中公式這樣寫:支點到受力點距離(力矩)
*
受力
=
支點到施力點距離(力臂)
*
施力,這樣就是一個杠桿。
杠桿也有省力杠桿跟費力的杠桿,兩者皆有但是功能表現不同。例如有一種用腳踩的打氣機,或是用手壓的榨汁機,就是省力杠桿
(力臂
>
力矩);但是我們要壓下較大的距離,受力端只有較小的動作。另外有一種費力的杠桿。例如路邊的吊車,釣東西的鉤子在整個桿的尖端,尾端是支點、中間是油壓機
(力矩
>
力臂),這就是費力的杠桿,但費力換來的就是中間的施力點只要動小距離,尖端的掛勾就會移動相當大的距離。
兩種杠桿都有用處,只是要用的地方要去評估是要省力或是省下動作范圍。另外有種東西叫做輪軸,也可以當作是一種杠桿的應用,不過表現尚可能有時要加上轉動的計算。
古希臘科學家阿基米德有這樣一句流傳千古的名言:"假如給我一個支點,我就能把地球挪動!"這句話不僅是催人奮進的警句,更是有著嚴格的科學根據的。
杠桿分類
[編輯本段]
杠桿可分為省力杠桿、費力杠桿和等臂杠桿。這幾類杠桿有如下特徵:
1.省力杠桿:L1>L2,
F1
評論
0
0
載入更多
H. 用簡單的話解釋一下杠桿原理,最好有圖解。。
杠桿又分稱費力杠桿、省力杠桿和等臂杠桿,杠桿原理也稱為「杠桿平衡條件」。內要使杠容桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。
如下圖所示為杠桿原理的最好解釋。
I. 杠桿原理的介紹
杠桿又分費力杠桿、省力杠桿和等臂杠桿,杠桿原理亦稱「杠桿平衡條件」。要使杠桿平衡,作用在杠桿上的兩個力矩(力與力臂的乘積)大小必須相等。即:動力×動力臂=阻力×阻力臂,用代數式表示為F1· L1=F2·L2。式中,F1表示動力,L1表示動力臂,F2表示阻力,L2表示阻力臂。從上式可看出,欲使杠桿達到平衡,動力臂是阻力臂的幾倍,動力就是阻力的幾分之一。
J. 杠桿原理怎麼給五歲的孩子講
帶小傢伙去坐蹺蹺板,實踐中告訴孩子其中的道理