導航:首頁 > 匯率傭金 > 杠桿支撐銷

杠桿支撐銷

發布時間:2022-04-26 12:37:02

『壹』 手推車的杠桿示意圖

輪子的軸是支點。G:阻力;F:動力

紅色線L1:動力臂

藍色線L2:阻力臂

『貳』 離合器分離不徹底的故障應怎樣診斷與排除

(1)故障現象

摩托車掛擋起步時,還未松開離合器握把就向前行駛;換擋時,雖然握緊離合器握把,但變速器有齒輪撞擊聲,且換擋困難;制動時,發動機容易熄火。

(2)故障原因與排除方法

離合器分離不徹底的故障原因與排除方法見表4-10。

圖4-31 離合器操縱機構

④離合器彈簧彈力不均勻。離合器彈簧彈力不均勻,使得離合器摩擦片受力不均,握緊離合器握把時,會出現分離不徹底的拖滯現象。

故障排除方法:更換成套的離合器彈簧。

⑤離合器主、從動轂齒槽磨成鋸齒形。離合器主、從動轂齒槽磨成鋸齒形,使摩擦片不能在齒槽內自如地活動。握緊離合器握把時,推桿雖能推開壓盤,但摩擦片卡在主動轂齒槽的鋸齒形凹槽內,摩擦片與從動片保持接觸狀態,引起離合器分離不徹底。

故障排除方法:修復離合器主、從動轂。用銼刀將齒槽側面銼平,且盡量少銼,同時保證齒槽上下尺寸一致,各槽口寬度一致,銼修完畢用油石打磨平滑。

『叄』 經濟學中杠桿原理是什麼

濟學中也有杠桿原理這一說。分別是經營杠桿,財務杠桿,復合杠桿.其中經回營杠桿是基答礎,財務杠桿最重要,復合杠桿是前兩者的和, 經營杠桿是由於固定成本的存在,導致銷售量增加一個較小的幅度時,EBIT增加一個較大的幅度。

財務杠桿是由於固定財務費用如利息的存在,經濟中的杠桿主要通過負債,用較少的本金支配更多的資產,撬動更大利潤。

  1. 具體的經濟杠桿有:政府杠桿、地方政府債務;宏觀杠桿、銀行資產對GDP佔比;

  2. 企業財務杠桿:企業負債。財務管理中的杠桿效應有三種形式,

  3. 杠桿的本質是通過負債把社會閑散資源集中起來,投入到生產領域,獲取更大的回報,拉動經濟增長。

  4. 即經營杠桿、財務杠桿、復合杠桿。在經濟學里,杠桿有廣義和狹義之分,狹義的指「財務杠桿」。一個企業在自有資金不足... 銀行的錢還是那麼多,只是多了兩層債務關系而已。 債是什麼,債就是錢。

  5. 財務杠桿是公司財務管理的重要分析工具,公司管理層可以利用財務管理中的幾種杠桿,在投融資決策方面做好「度」的把握,並進行相應評估。

  6. 控制經營杠桿的途徑企業一般可以通過增加銷售金額、降低產品單位變動成本、降低固定成本比重等措施使經營杠桿率下降,降低經營風險。

『肆』 杠桿的支點受到多大的力,可以計算嗎

以同一個同步且連續相關體系的物體作為考量

如果保持圍繞支點運動,而支點不動
若體系物體的重心加速度矢量為a(旋轉加速度和向心加速度的矢量和)
則F合=am

任何作用力都能體現在重心上
F合=F支+F它合
故F支=am-F它合

舉例:
在汽車設計中心有個實驗機械機構,是一組傳動中間齒輪軸,測試實驗過程中是不平衡受力
不平衡受力的中間齒輪軸 有三個齒輪 和一個凸輪
分別為
齒輪1 (嚙合半徑為r1) 作用是接收驅動,比如掛輪系統
受到左邊離合驅動齒輪向下的嚙合力F1
齒輪2 (嚙合半徑為r2) 作用是傳遞給主要負載,比如汽車負載蝸桿同步齒輪
受到右邊負載齒輪向下的嚙合力F2
齒輪3 (嚙合半徑為r3) 作用是傳遞給次要負載,比如小型發電機主軸齒輪
受到上端嚙合齒輪向右的嚙合力F3
凸輪 (偏心度為r4) 作用是轉數檢測和液壓供力,受到恆定向左彈簧力F4(F4浮動微小,視為恆定)
已知整個輪組質量為M,慣量平均半徑為R
其中齒輪和軸質量合計M1,偏心輪為M4 M=M1+M4
在某個階段齒輪軸在加速轉動過程角加速度為j,某瞬間達到ω角速度,凸輪最高處朝右
求:在這個瞬間時齒輪軸支點受力,(忽略軸承摩擦力)
注:(不需要通過重力和軸承支撐力,或者說是支撐力克服重力後形成了支點復合受力)

1:根據我的方法解答
整體重心偏心距離=M4*r4/M=r4*M4/M 凸輪朝向就是瞬間偏心朝向(水平右)
下文令其以r表示 r=r4*M4/M
另根據驅動受力分析,體系旋轉方向是逆時針
故而重心正在做向上的加速度j
以及向左的向心加速度x=ωωr
則整體加速度矢量和=√(jj+xx)=√(jj+ωωωωrr)
故F合=am=m√(jj+ωωωωrr)
其他除了支點以外的受力
有向下的 F1+F2
向右的 F3-F4
當採用矢量表示時F支=F合-F1-F2-F3-F4 (全部加橫向表示矢量)
運算過程必須全部轉成復數三角函數表示,有些復雜
為了簡化,我們分成水平和鉛錘方向 (水平向右為正,豎直向上為正)
F合的豎直分力就是+Mj,水平分力為 -Mx
F1是豎直分力值為 -F1
F2是豎直分力值為 -F2
F3是水平分力值為 F3
F4是水平分力值為 -F4
所以F支的水平分力=-Mx-F3+F4=F4-Mx-F3 (實際方向按正負決定,下同)
F支的垂直分力=Mj+F1+F2

F支矢量=√(F支水平^2+F支垂直^2) 方向=arctan(F支垂直/F支水平)

2:結合力矩計算(舉數值為例)
如果以上M1=8kg M4=2kg M=M1+M4=10kg R=0.25 r4=0.04米
r1=0.2米 r2=0.4 r3=0.6
F1=1000N F2=400N F3=50N F4=100N
則F1力矩為1000*0.2=200Nm
F2力矩為400*0.4=160Nm
F3力矩50*0.6=30Nm
F4沒有力矩,則旋轉力矩=200-160-30=10Nm
產生j=10Nm/M/R=10/10/0.25=4弧度/秒秒
假如加速2.5秒到ω=10弧度/秒的瞬間
由於r=r4M4/M=0.04*2/8=0.01米
故x=ωωr=1米/秒秒
則F合水平=-Mx=-10*1=-10N F合垂直=+Mj=10*4=40N
則F支水平=F4-Mx-F3=100-10-50=40N (正值表示方向朝右)
F支垂直=Mj+F1+F2=40+1000+400=1440N(正值方向朝上)
F支點受力就是略微右斜的向上

希望你看得懂,只是舉例而已

『伍』 汽車底盤實訓總結。

汽車底盤實訓總結

一、實訓小結

時光如梭,轉眼間本學期的底盤實訓就到這里結束了。底盤實訓讓我們了解了底盤其部件的工作原理和檢修,鞏固和加強了汽車構造、原理課程的理論知識與實踐,為以後的工作、學習奠定了必要的基礎,掌握汽車總成、各部件及其相互間的連接關系、拆裝方法和步驟及注意事項。

汽車底盤是由傳動系、行駛系、轉向系和制動系四部分組成。底盤的作用是支撐、安裝汽車發動機及其部件、總成,形成汽車整體都構造,並通過發動機的傳動使汽車產生運動,保證正常的行駛。

二、離合器

1、離合器及操縱機構的解體

離合器位於發動機和變速箱之間的飛輪殼內,用螺絲釘將離合器總成固定在飛輪的後平面上,離合器的輸出軸就是變速器的輸入軸。在汽車行駛過程中,駕駛員可根據需要踩下或松開離合器踏板,使發動機與變速箱暫時分離和逐漸接合,以切斷或傳遞發動機向變速器輸入的動力。

1) 從發動機上拆下變速器總成,在拆下離合器外殼(連同分離叉和分離軸承一同拆下)。

2) 在拆離合器外殼時,首先應檢查有沒有拆裝標志。如無標志就應在離合器蓋和飛輪上做好裝配對合標記,這樣在組裝時就能保持離合器與曲軸組件的動平衡。

3) 拆下離合器蓋緊固螺栓,此時應以對角交叉的方向順序吧各螺栓均勻擰松 拆下。

4) 拆下離合器蓋後,即可拆下從動盤及離合器總成。

5) 分解離合器總成時,為防止離合器內的零件彈出,必須要用專用工具壓緊離合器蓋後才能分解。

A)在離合器蓋總成的離合器蓋和壓盤上做好裝配標記。

B) 用專用工具壓緊離合器蓋,拆下離合器分離杠桿的4個調節螺母和緊固傳動片的4個螺栓。

C) 緩慢放鬆專用工具,依次拆下離合器蓋、離合器彈簧、離合器壓盤等,並按原位套好,同時,擺放好壓盤、摩擦片等零部件。

2、離合器及操縱機構的裝配與調整(裝配前,應將檢查合格的零件清洗干凈)

1)用四隻傳動片鉚釘將8片傳動片分成四組,在專用夾具上與離合器結合在一起。

2)吧四隻分離杠桿彈簧分別裝在離合器上。

3)將分離杠桿、分離杠桿支撐銷、浮動銷、擺動塊分別裝在離合器壓盤的相應位置上【裝配時:離合器蓋與壓盤結合時要對齊記號,分離杠桿活動部位應塗少量潤滑脂,所有壓盤彈簧應按自由長度的高低、彈力的大小、均勻對稱地排列使整個壓盤每處壓力一致,各分離杠桿承壓面應位於同一平面內

其擺差應大於規定值(一般為0、25~0、3mm)分離杠桿端部離減震彈簧片平面的距離應為35.4±0.2mm,壓盤在傳動銷上應活動自如、不合適時可換位安裝,否則會使離合器打滑或分離不徹底】。

3、離合器從動盤總成的裝配

1)注意從動盤總成花鍵套的安裝方向,從動盤轂短頭應朝向飛輪。

2)為保證曲軸與從動盤的同軸度,以便安裝變速器第一軸,一般方法是用一個與第一軸前端一樣的工具(或舊的變速器第一軸)作導向桿,插入從動盤轂與曲軸後端中心孔內,對正中心,然後分兩三次均勻地擰緊緊固螺栓,以免從動盤偏斜,待離合器裝調好後,再抽出工具。

4、離合器總成與飛輪的裝配

裝配前,應對飛輪、壓盤、摩擦片的工作表面進行清潔,動作表面不得有油污。可用砂紙對表面打毛,並吹去磨下的灰塵,再清潔潤滑變速器前導向軸承。將從動盤放置在飛輪上,裝有減震盤的一面朝外,將離合器蓋上定位對准飛輪的兩個定位銷,同時在離合器中央插入變速器輸入軸,使從動盤處於中央位置,旋上兩離合器與飛輪的連接螺栓,撬動飛輪旋轉,將一周的8個螺栓全部旋上後,再撬動飛輪,將一周的螺栓按規定轉矩旋緊,取下變速器輸入軸(第一軸)。

5、安裝分離叉

安裝時,可在分離器的兩端塗以少量潤滑脂或潤滑油。

6、離合器踏板自由行程的調整

檢查離合器踏板自由行程的方法:可用普通直尺在駕駛員地板上測出離合器踏板在完全放鬆時的高度,在用手輕輕的推壓踏板,當感覺到阻力增大(即分離軸承端面與分離端面剛剛接觸)時,停止推壓,測出踏板高度,前後兩次測出的高度差即為離合器踏板自由行程的數值。

離合器踏板自由行程的調整方法:可通過調整分離拉桿上的球形調整螺母來進行,該螺母旋入 則自由行程減小,旋出 則增大。調整合適後,鎖緊螺母鎖緊。

二、變速器

變速箱由變速傳動機構和變速操縱機構兩部分組成,變速傳動機構的主要作用是改變轉矩和轉速的數值和方向,操縱機構的作用主要是控制傳動機構實現變速器傳動比的變換,即實現換擋以達到變速變矩。

1、變速器的拆卸

1)從變速器第一軸承蓋上拆下分離軸承及座

2)拆下駐車制動鼓上的兩個緊固螺栓,拆下駐車制動鼓。

3)將變速桿置於空擋位置,拆下變速器蓋總成。先拆下變速器頂蓋總成,拆下變速桿防轉銷線,擰下變速叉制動螺釘,依次從後向前沖出一、倒檔,二、三檔及四、五檔叉軸,取下變速叉導塊,當快要取出叉軸時,注意防止自鎖彈簧和自鎖鋼球彈出。

4)拆下變速器第二軸後軸承蓋。

5)從變速器前端拆下第一軸軸承蓋的螺栓和鋼絲鎖線,取下軸承蓋。

6)用銅棒輕輕敲擊第一軸,用拉器將第一軸連同軸承一起從前端取出,在從第一軸中取出第二軸前軸承

7)用手托起第二軸前端上需愛晃動,並用銅棒左右敲擊第二軸的後端,可將第二軸向後推出,再用拉器從第二軸上取下後軸承,然後,第二軸可從變速器殼體內部取出。

8)從第二軸上取下四、五檔同步器總成,拆下四、五檔固定齒座鎖環,取下止推環,則第二軸上二、三檔同步器總成和他前面的零件可依次從軸上取下。

從第二軸後端取下一檔、倒檔齒輪,將止推環鎖銷壓住,轉動止推環並將其取下,退出止推環時,應注意防止止推環鎖銷被彈簧彈出。

9)從殼體上拆下中間軸承前後軸承蓋,撬動後軸承鎖片,旋下圓螺母,拆下倒檔檢查孔蓋,取下倒檔齒輪軸鎖片,利用倒檔軸後端的螺紋孔,用專用工具將軸拔出,並從倒檔檢查查孔取出倒檔齒輪、軸承及隔套。

用銅棒頂在中間軸前端,敲擊銅棒,於是中間軸總成帶後軸承可以從殼體向後脫出。用拉力器從軸上拉下後軸承,這樣中間軸總成可以從殼體內取出,在用銅棒在殼體內頂住中間軸承前軸外圈,敲擊銅棒,取出中間軸前軸承。

10)從中間軸上取下彈性擋圈,用壓力機將常嚙合齒輪壓出,在取下彈性擋圈,用壓力機加工四檔、三檔、二檔齒輪及隔套依次壓出。

11)變速器頂蓋的拆卸:先拆下變速器頂蓋總成,拆去彈簧,頂蓋總成即可解體。

2、變速器的裝配

變速器在裝配前應清洗變速器殼體及蓋內的鐵屑、油污及贓物等,並將變速各軸、齒輪、軸承清潔干凈,疏通齒輪上的油孔。裝配時,宜使用壓力機壓入軸承及齒輪等,無壓力機時最好使用銅棒敲擊軸承或齒輪,其裝配順序一般為:先裝中間軸、倒檔軸,在裝二軸、一軸,最後裝上變速器蓋總成,各密封墊處應塗上專用密封膠防止漏油。

1) 將變速器殼體固定在工作台上,將分裝好的中間軸總成放入殼體內中間軸孔中,兩端分別套上軸承。從倒檔齒輪窗口放入倒檔齒輪,將新軸承和隔套放入齒輪內孔中,從變速器後端裝入倒檔齒輪軸。

2)用銅棒將中間軸前後軸承敲入軸承座孔,把倒檔軸敲到安裝位置。中間軸後端軸承貼緊軸頸台階後,套上鎖片,並把螺母以147N·m力矩擰緊,然後用鎖片把螺母鎖止。在中間軸後軸承外圈外緣上套上擋圈,在中間軸前後端的變速器殼體上分別裝上中間軸前後軸承蓋及墊片,在變速器殼體左側裝上倒檔窗口蓋板,並用塗膠的螺栓對稱緊固。

3)裝中間軸總成時,齒輪應依次壓入,注意齒輪的鍵槽必須對准軸上的半圓鍵,以免零件壓壞。

5)將裝好的第二軸總成放入殼體內,將四、五檔同步器總成套在第二軸上。裝二、三檔同步器時,要將滑動齒套凸出的一面朝向前端(第一軸的方向)。

6)從第二軸後端套上後軸承,並用銅棒輕輕敲擊,使軸承靠到第二軸花鍵部分的台階上,

套入里程錶主動齒輪和隔套,然後在軸承外圈上裝上擋圈。

7)在變速器第一軸上壓入軸承,裝上擋圈。在內孔中裝上軸承,然後把第一軸裝到殼體前端軸承孔中,使第二軸前端軸頸對准第一軸軸承孔。用銅棒一邊輕輕敲擊,一邊用手轉動第一軸,使軸承平順裝入殼體座孔中。

8)從第一軸前端先將密封紙墊放在軸承蓋貼合處,套上軸承蓋,用螺栓對稱緊固,並用鋼絲線以8字型穿入螺栓頭部的孔中擰緊(軸承蓋左上方的螺栓上還應裝有離合器分離軸承的復位已。

9)在殼體上裝上第二軸後軸承蓋,並加上新紙墊,用螺栓對稱緊固。裝上甩油環,把已裝好的駐車制動器總成固定在軸承蓋上。把駐車制動器凸緣套在第二軸上,裝上蝶型墊圈,用鎖緊螺母緊固(擰緊力矩為196~245N·m)。

11)裝復變速器蓋。

將變速叉軸裝在變速器蓋上相應的孔中。安裝變速叉軸時,先將鎖止彈簧、自鎖鋼球、互鎖銷及互鎖銷鋼球放入定位槽中,再將一導向軸的斜面插入,使鋼球不被彈出。然後敲擊叉軸,使叉軸抵住導向軸,快速通過後,取出導向軸,再裝上二、三檔,四、五檔,一、倒檔變速叉及導塊等。

擰入變速叉止動螺釘,擰緊後用鋼絲鎖線分別將螺釘鎖緊在叉軸上。

在變速器蓋前端軸孔上打入邊緣上塗有密封膠的塞片。

12)變速器頂蓋及變速桿裝配時應注意檢查下列項目:

①壺速桿球頭在放進球頭銷座後,應使球頭平面與蓋平面處於同一高度,若球頭銷平面高出過多,則應更換球頭銷座。

②變速桿限位銷釘與球頭直槽的配合間隙應不大於0.20mm,若過大時,需另配銷釘。錐形彈簧彈力要好。

③在變速器蓋總成裝配好後,應進行掛檔試驗,用手扳動變速桿至各檔位時,需要相應的力方可扳動,但不宜過緊、過松,並能明顯感覺到自鎖裝置的鎖止作用。

扳動變速桿,逐一進行檔位試驗,用手轉動一軸,則二軸應同時轉動,但不能產生滑轉現象。

13)在變速器處於空檔位置時,裝上密封襯套、變速器蓋總成(在變速器殼體頂面定位孔中打入定位銷後再裝)。

在螺栓上塗上密封膠,並把它們裝到變速器蓋總成上。擰上放油螺塞。加註潤滑油後,擰上加油螺塞。

『陸』 怎樣排除工程機械主離合器異響

離合器位於發動機和變速箱之間的飛輪殼內,用螺釘將離合器總成固定在飛輪的後平面上,離合器的輸出軸就是變速箱的輸入軸。在汽車行駛過程中,駕駛員可根據需要踩下或松開離合器踏板,使發動機與變速箱暫時分離和逐漸接合,以切斷或傳遞發動機向變速器輸入的動力。
專業的吊配商城,存升吊配商城上線以來受到很多朋友的關注,存升吊配主要經營輪式起重機、隨車起重機、履帶起重機、越野起重機四大起重機系配件,配件分為:發動機、底盤、電氣系統、液壓系統、回轉機構、伸縮機構、起升機構、裝飾/結構/標准件、其他九大類別。存升吊配商城的液壓空調全面的上架。
工程機械主離合器產生異響的主要原因是分離軸承潤滑不良、分離杠桿調整不當、摩擦副不正常摩擦。常發生異響主要有4個部位。
1、主動盤
(1)現象
不踩離合器踏板時無響聲,但將離合器踏板踩到底時,會出現一種無節奏的咔啦響聲。此響聲在發動機怠速及怠速不穩時比較明顯,且隨發動機轉速升高而加重。但在發動機穩定的中速運轉時,此響聲減弱或消失。
(2)故障原因
對於雙片式離合器,則可能是主動盤傳動凸塊與傳動槽或傳動銷與銷孔磨損松曠,在離合器分離或發動機怠速不穩時,主動盤周向擺動而產生異響;對於單片式離合器,則為壓盤與離合器蓋配合松曠所致。
(3)排查方法
拆下離合器殼上的檢視口蓋板或底蓋,將離合器踏板踩到底,用旋具撥動中間主動盤和壓盤進行檢查。若徑向間隙過大,說明配合松曠,應更換。如果離合器沒有分離不徹底或打滑現象,可繼續使用。
2、分離軸承
(1)現象
稍微踩下離合器踏板使分離軸承與分離杠桿剛剛接觸時,離合器內發出沙沙響聲;完全踩下離合器踏板後,離合器發出嘩啦響聲。
(2)故障原因
故障原因可能有:分離軸承缺油或燒壞,造成分離軸承卡死;分離軸承回位彈簧過軟和脫落而不能回位,使分離軸承常壓在分離杠桿上,造成分離軸承過早損壞;分離軸承與分離叉的回位鉤脫落,使分離軸承前後竄動,與分離杠桿碰撞;分離軸承因磨損而松曠;分離軸承與分離套筒松曠。
(3)排查方法
若發動機運轉時輕輕踩下離合器踏板,消除其自由行程後能聽到響聲,而放鬆離合器踏板後響聲消失,則表明為分離軸承響聲。若發出輕微沙沙響聲,多是分離軸承缺油或磨損;發出嘩啦響聲,甚至帶有凌亂的金屬破碎聲,則表明分離軸承損壞或磨損過甚;發出間斷的金屬撞擊聲,則為分離軸承回位彈簧鬆弛或折斷,或因分離軸承與分離叉之間的回位鉤松脫,使分離軸承竄動,並與分離杠桿或分離叉碰撞而發響;分離杠桿支撐彈簧損壞時也會使分離杠桿與分離軸承碰撞而發響。
對分離軸承注油後若響聲消失,分離軸承可繼續使用,否則說明分離軸承已損壞,應更換。
3、.分離杠桿
(1)現象
離合器發出無節奏呱啦響聲。
(2)故障原因
故障原因可能有:分離杠桿支架鎖片松動(或脫落)、分離杠桿支架折斷,或分離杠桿發生擺動,使離合器在運轉時發出響聲;分離杠桿支架銷與銷孔磨損松曠,或分離杠桿銷孔內的滾針軸承過度磨損或折斷,以及分離杠桿調整螺釘磨損、松曠;分離杠桿支撐彈簧失效或折斷;分離杠桿的分離環損壞或松脫等。
拆下離合器殼上的檢視口蓋板或底蓋,緩慢轉動曲軸,檢查分離杠桿及支架、分離環的狀況,必要時予以調整或緊固。如有損壞,則應更換。

『柒』 什麼是「帶鼓盤式」

汽車上用以使外界(主要是路面)在汽車某些部分(主要是車輪)施加一定的力,從而對其進行一定程度的強制制動的一系列專門裝置統稱為制動系統。其作用是:使行駛中的汽車按照駕駛員的要求進行強制減速甚至停車;使已停駛的汽車在各種道路條件下(包括在坡道上)穩定駐車;使下坡行駛的汽車速度保持穩定。
對汽車起制動作用的只能是作用在汽車上且方向與汽車行駛方向相反的外力,而這些外力的大小都是隨機的、不可控制的,因此汽車上必須裝設一系列專門裝置以實現上述功能。

一、制動系統概述

1.制動系可分為如下幾類:

(1) 按制動系統的作用 制動系統可分為行車制動系統、駐車制動系統、應急制動系統及輔助制動系統等。上述各制動系統中,行車制動系統和駐車制動系統是每一輛汽車都必須具備的。
(2) 制動操縱能源 制動系統可分為人力制動系統、動力制動系統和伺服制動系統等。以駕駛員的肌體作為唯一制動能源的制動系統稱為人力制動系統;完全靠由發動機的動力轉化而成的氣壓或液壓形式的勢能進行制動的系統稱為動力制動系統;兼用人力和發動機動力進行制動的制動系統稱為伺服制動系統或助力制動系統。
(3) 按制動能量的傳輸方式 制動系統可分為機械式、液壓式、氣壓式、電磁式等。同時採用兩種以上傳能方式的制動系稱為組合式制動系統。

2.制動系統的一般工作原理

制動系統的一般工作原理是,利用與車身(或車架)相連的非旋轉元件和與車輪(或傳動軸)相連的旋轉元件之間的相互摩擦來阻止車輪的轉動或轉動的趨勢。
可用右圖所示的一種簡單的液壓制動系統示意圖來說明制動系統的工作原理。一個以內圓面為工作表面的金屬制動鼓固定在車輪輪轂上,隨車輪一同旋轉。在固定不動的制動底板上,有兩個支承銷,支承著兩個弧形制動蹄的下端。制動蹄的外圓面上裝有摩擦片。制動底板上還裝有液壓制動輪缸,用油管5與裝在車架上的液壓制動主缸相連通。主缸中的活塞3可由駕駛員通過制動踏板機構來操縱。
當駕駛員踏下制動踏板,使活塞壓縮制動液時,輪缸活塞在液壓的作用下將制動蹄片壓向制動鼓,使制動鼓減小轉動速度,或保持不動。
圖D-ZD-01制動系統工作原理示意圖

1.制動踏板 2.推桿 3.主缸活塞 4.制動主缸 5.油管 6.制動輪缸 7.輪缸活塞 8.制動鼓 9.摩擦片 10.制動蹄 11.制動底板 12.支承銷 13.制動蹄回位彈簧

3.轎車典型制動系統的組成

右圖給出了一種轎車典型制動系統的組成示意圖,可以看出,制動系統一般由制動操縱機構和制動器兩個主要部分組成。
(1) 制動操縱機構 產生制動動作、控制制動效果並將制動能量傳輸到制動器的各個部件,如圖中的2、3、4、6,以及制動輪缸和制動管路。
(2) 制動器 產生阻礙車輛的運動或運動趨勢的力(制動力)的部件。汽車上常用的制動器都是利用固定元件與旋轉元件工作表面的摩擦而產生制動力矩,稱為摩擦制動器。它有鼓式制動器和盤式制動器兩種結構型式。
圖D-ZD-02 轎車典型制動系統組成示意圖

1.前輪盤式制動器 2.制動總泵 3.真空助力器 4.制動踏板機構 5.後輪鼓式制動器 6.制動組合閥 7.制動警示燈

二、制動器——鼓式制動器

1. 概述

一般制動器都是通過其中的固定元件對旋轉元件施加制動力矩,使後者的旋轉角速度降低,同時依靠車輪與地面的附著作用,產生路面對車輪的制動力以使汽車減速。凡利用固定元件與旋轉元件工作表面的摩擦而產生制動力矩的制動器都成為摩擦制動器。目前汽車所用的摩擦制動器可分為鼓式和盤式兩大類。

旋轉元件固裝在車輪或半軸上,即制動力矩直接分別作用於兩側車輪上的制動器稱為車輪制動器。旋轉元件固裝在傳動系的傳動軸上,其制動力矩經過驅動橋再分配到兩側車輪上的制動器稱為中央制動器。

2.領從蹄式制動器

增勢與減勢作用 右圖為領從蹄式制動器示意圖,設汽車前進時制動鼓旋轉方向(這稱為制動鼓正向旋轉)如圖中箭頭所示。沿箭頭方向看去,制動蹄1的支承點3在其前端,制動輪缸6所施加的促動力作用於其後端,因而該制動蹄張開時的旋轉方向與制動鼓的旋轉方向相同。具有這種屬性的制動蹄稱為領蹄。與此相反,制動蹄2的支承點4在後端,促動力加於其前端,其張開時的旋轉方向與制動鼓的旋轉方向相反。具有這種屬性的制動蹄稱為從蹄。當汽車倒駛,即制動鼓反向旋轉時,蹄1變成從蹄,而蹄2則變成領蹄。這種在制動鼓正向旋轉和反向旋轉時,都有一個領蹄和一個從蹄的制動器即稱為領從蹄式制動器。
圖D-ZD-03領從蹄式制動器示意圖

l.領蹄 2.從蹄 3、4.支點 5.制動鼓 6.制動輪缸
圖D-ZD-04領從蹄式制動器受力示意圖
如右圖,制動時兩活塞施加的促動力是相等的。制動時,領蹄1和從蹄2在促動力FS的作用下,分別繞各自的支承點3和4旋轉到緊壓在制動鼓5上。旋轉著的制動鼓即對兩制動蹄分別作用著法向反力N1和N2,以及相應的切向反力T1和T2,兩蹄上的這些力分別為各自的支點3和4的支點反力Sl和S2所平衡。可見,領蹄上的切向合力Tl所造成的繞支點3的力矩與促動力FS所造成的繞同一支點的力矩是同向的。所以力T1的作用結果是使領蹄1在制動鼓上壓得更緊從而力T1也更大。這表明領蹄具有「增勢」作用。相反,從蹄具有「減勢」作用。故二制動蹄對制動鼓所施加的制動力矩不相等。倒車制動時,雖然蹄2變成領蹄,蹄1變成從蹄,但整個制動器的制動效能還是同前進制動時一樣。
在領從式制動器中,兩制動蹄對制動鼓作用力N1』和N2』的大小是不相等的,因此在制動過程中對制動鼓產生一個附加的徑向力。凡制動鼓所受來自二蹄的法向力不能互相平衡的制動器稱為非平衡式制動器。

3.單向雙領蹄式制動器
在制動鼓正向旋轉時,兩蹄均為領蹄的制動器稱為雙領蹄式制動器,其結構示意圖如右圖所示。
雙領蹄式制動器與領從蹄式制動器在結構上主要有兩點不相同,一是雙領蹄式制動器的兩制動蹄各用一個單活塞式輪缸,而領從蹄式制動器的兩蹄共用一個雙活塞式輪缸;二是雙領蹄式制動器的兩套制動蹄、制動輪缸、支承銷在制動底板上的布置是中心對稱的,而領從蹄式制動器中的制動蹄、制動輪缸、支承銷在制動底板上的布置是軸對稱布置的。
圖D-ZD-05雙領蹄式制動器受力示意圖

1. 制動輪缸 2.制動蹄 3.支承銷 4.制動鼓

4.雙向雙領蹄式制動器

無論是前進制動還是倒車制動,兩制動蹄都是領蹄的制動器稱為雙向雙領蹄式制動器,圖5-42是其結構示意圖器。與領從蹄式制動器相比,雙向雙領蹄式制動器在結構上有三個特點,一是採用兩個雙活塞式制動輪缸;二是兩制動蹄的兩端都採用浮式支承,且支點的周向位置也是浮動的;三是制動底板上的所有固定元件,如制動蹄、制動輪缸、回位彈簧等都是成對的,而且既按軸對稱、又按中心對稱布置。
圖D-ZD-06雙向雙領蹄式制動器示意圖

1.制動輪缸 2.制動蹄 3.制動鼓
右圖是一種雙向雙領蹄式制動器的具體結構。在前進制動時,所有的輪缸活塞8都在液壓作用下向外移動,將兩制動蹄6和11壓靠到制動鼓1上。在制動鼓的摩擦力矩作用下,兩蹄都繞車輪中心O朝箭頭所示的車輪旋轉方向轉動,將兩輪缸活塞外端的支座7推回,直到頂靠到輪缸端面為止。此時兩輪缸的支座7成為制動蹄的支點,制動器的工作情況便同圖5-41所示的制動器一樣。
倒車制動時,摩擦力矩的方向相反,使兩制動蹄繞車輪中心O逆箭頭方向轉過一個角度,將可調支座10連同調整螺母9一起推回原位,於是兩個支座10便成為蹄的新支承點。這樣,每個制動蹄的支點和促動力作用點的位置都與前進制動時相反,其制動效能同前進制動時完全一樣。
圖D-ZD-07 雙向雙領蹄式制動器

5.雙從蹄式制動器

前進制動時兩制動蹄均為從蹄的制動器稱為雙從蹄式制動器,其結構示意圖見圖5-44。這種制動器與雙領蹄式制動器結構很相似,二者的差異只在於固定元件與旋轉元件的相對運動方向不同。雖然雙從蹄式制動器的前進制動效能低於雙領蹄式和領從蹄式制動器,但其效能對摩擦系數變化的敏感程度較小,即具有良好的制動效能穩定性。
雙領蹄、雙向雙領蹄、雙從蹄式制動器的固定元件布置都是中心對稱的。如果間隙調整正確,則其制動鼓所受兩蹄施加的兩個法向合力能互相平衡,不會對輪轂軸承造成附加徑向載荷。因此,這三種制動器都屬於平衡式制動器。
圖D-ZD-08 雙從蹄式制動器示意圖

1.支承銷 2.制動蹄 3.制動輪缸 4.制動鼓

6.單向自增力式制動器

單向自增力式制動器的結構原理見右圖。第一制動蹄1和第二制動蹄2的下端分別浮支在浮動的頂桿6的兩端。
汽車前進制動時,單活塞式輪缸將促動力FS1加於第一蹄,使其上壓靠到制動鼓3上。第一蹄是領蹄,並且在各力作用下處於平衡狀態。頂桿6是浮動的,將與力S1大小相等、方向相反的促動力FS2施於第二蹄。故第二蹄也是領蹄。作用在第一蹄上的促動力和摩擦力通過頂桿傳到第二蹄上,形成第二蹄促動力FS2。對制動蹄1進行受力分析可知,FS2>FS1。此外,力FS2對第二蹄支承點的力臂也大於力FS1對第一蹄支承的力臂。因此,第二蹄的制動力矩必然大於第一蹄的制動力矩。倒車制動時,第一蹄的制動效能比一般領蹄的低得多,第二蹄則因未受促動力而不起制動作用。
圖D-ZD-09單向自增力式制動器
1.第一制動蹄 2. 支承銷 3. 制動鼓 4. 第二制動蹄 5. 可調頂桿體 6.制動輪缸
右圖為一種單向自增力式制動器的具體結構。第一蹄1和第二蹄6的上端被各自的回位彈簧2拉攏,並以鉚於腹板上端兩側的夾板3的內凹弧面支靠著支承銷4。兩蹄的下端分別浮支在可調頂桿兩端的直槽底面上,並用彈簧8拉緊。受法向力較大的第二蹄摩擦片的面積做得比第一蹄的大,使兩蹄的單位壓力相近。
在制動鼓尺寸和摩擦系數相同的條件下,單向自增力式制動器的前進制動效能不僅高於領從蹄式制動器,而且高於雙領蹄式制動器。倒車時整個制動器的制動效能比雙從蹄式制動器的效能還低。
圖D-ZD-10單向自增力式制動器

1.第一制動蹄 2.制動蹄回位彈簧 3.夾板 4.支承銷 5.制動鼓 6.第二制動蹄 7.可調頂桿體 8.拉緊彈簧 9.調整螺釘 10.頂桿套 11.制動輪

7.雙向自增力式制動器

雙向自增力式制動器的結構原理如圖5-47所示。其特點是制動鼓正向和反向旋轉時均能借蹄鼓間的摩擦起自增力作用。它的結構不同於單向自增力式之處主要是採用雙活塞式制動輪缸4,可向兩蹄同時施加相等的促動力FS。制動鼓正向(如箭頭所示)旋轉時,前制動蹄1為第一蹄,後制動蹄3為第二蹄;制動鼓反向旋轉時則情況相反。由圖可見,在制動時,第一蹄只受一個促動力FS而第二蹄則有兩個促動力FS和S,且S>FS。考慮到汽車前進制動的機會遠多於倒車制動,且前進制動時制動器工作負荷也遠大於倒車制動,故後蹄3的摩擦片面積做得較大。
圖D-ZD-11雙向自增力式制動器示意圖

1. 前制動蹄 2.頂桿 3.後制動蹄 4.輪缸 5.支撐銷
圖D-ZD-12雙向自增力式制動器實物
右圖所示的制動器即屬於雙向自增力式制動器。不制動時,兩制動蹄和的上端在回位彈簧的作用下浮支在支承銷上,兩制動蹄的下端在拉簧的作用下浮支在浮動的頂桿兩端的凹槽中。汽車前進制動時,制動輪缸(圖中未畫出)的兩活塞向兩端頂出,使前後制動蹄離開支承銷並壓緊到制動鼓上,於是旋轉著的制動鼓與兩制動蹄之間產生摩擦作用。由於頂桿是浮動的,前後制動蹄及頂桿沿制動鼓的旋轉方向轉過一個角度,直到後制動蹄的上端再次壓到支承銷上。此時制動輪缸促動力進一步增大。由於從蹄受頂桿的促動力大於輪缸的促動力,從蹄上端不會離開支承銷。汽車倒車制動時,制動器的工作情況與上述相反。

8.凸輪式制動器

目前,所有國產汽車及部分外國汽車的氣壓制動系統中,都採用凸輪促動的車輪制動器,而且大多設計成領從蹄式。
圖D-ZD-22 凸輪式制動器
右圖為一凸輪式前輪制動器。制動時,制動調整臂在制動氣室6的推桿作用下,帶動凸輪軸轉動,使得兩制動蹄壓靠到制動鼓上而制動。由於凸輪輪廓的中心對稱性及兩蹄結構和安裝的軸對稱性,凸輪轉動所引起的兩蹄上相應點的位移必然相等。
這種由軸線固定的凸輪促動的領從蹄式制動器是一種等位移式制動器,制動鼓對制動蹄的摩擦使得領蹄端部力圖離開制動凸輪,從蹄端部更加靠緊凸輪。因此,盡管領蹄有助勢作用,從蹄有減勢作用,但對等位移式制動器而言,正是這一差別使得制動效能高的領蹄的促動力小於制動效能低的從蹄的促動力,從而使得兩蹄的制動力矩相等。

9.楔式制動器
楔式制動器中兩蹄的布置可以是領從蹄式。作為制動蹄促動件的制動楔本身的促動裝置可以是機械式、液壓式或氣壓式。
兩制動蹄端部的圓弧面分別浮支在柱塞3和柱塞6的外端面直槽底面上。柱塞3和6的內端面都是斜面,與支於隔架5兩邊槽內的滾輪4接觸。制動時,輪缸活塞15在液壓作用下推使制動楔13向內移動。後者又使二滾輪一面沿柱塞斜面向內滾動,一面推使二柱塞3和6在制動底板7的孔中外移一定距離,從而使制動蹄壓靠到制動鼓上。輪缸液壓一旦撤除,這一系列零件即在制動蹄回位彈簧的作用下各自回位。導向銷1和10用以防止兩柱塞轉動。

10.鼓式制動器小結

以上介紹的各種鼓式制動器各有利弊。就制動效能而言,在基本結構參數和輪缸工作壓力相同的條件下,自增力式制動器由於對摩擦助勢作用利用得最為充分而居首位,以下依次為雙領蹄式、領從蹄式、雙從蹄式。但蹄鼓之間的摩擦系數本身是一個不穩定的因素,隨制動鼓和摩擦片的材料、溫度和表面狀況(如是否沾水、沾油,是否有燒結現象等)的不同可在很大范圍內變化。自增力式制動器的效能對摩擦系數的依賴性最大,因而其效能的熱穩定性最差。
在制動過程中,自增力式制動器制動力矩的增長在某些情況下顯得過於急速。雙向自增力式制動器多用於轎車後輪,原因之一是便於兼充駐車制動器。單向自增力式制動器只用於中、輕型汽車的前輪,因倒車制動時對前輪制動器效能的要求不高。雙從蹄式制動器的制動效能雖然最低,但卻具有最良好的效能穩定性,因而還是有少數華貴轎車為保證制動可靠性而採用(例如英國女王牌轎車)。領從蹄制動器發展較早,其效能及效能穩定性均居於中游,且有結構較簡單等優點,故目前仍相當廣泛地用於各種汽車。

三、制動器——盤式制動器

1. 概述

圖D-ZD-13盤式制動器
盤式制動器摩擦副中的旋轉元件是以端面工作的金屬圓盤,被稱為制動盤。其固定元件則有著多種結構型式,大體上可分為兩類。一類是工作面積不大的摩擦塊與其金屬背板組成的制動塊,每個制動器中有2~4個。這些制動塊及其促動裝置都裝在橫跨制動盤兩側的夾鉗形支架中,總稱為制動鉗。這種由制動盤和制動鉗組成的制動器稱為鉗盤式制動器。另一類固定元件的金屬背板和摩擦片也呈圓盤形,制動盤的全部工作面可同時與摩擦片接觸,這種制動器稱為全盤式制動器。鉗盤式制動器過去只用作中央制動器,但目前則愈來愈多地被各級轎車和貨車用作車輪制動器。全盤式制動器只有少數汽車(主要是重型汽車)採用為車輪制動器。這里只介紹鉗盤式制動器。鉗盤式制動器又可分為定鉗盤式和浮鉗盤式兩類。
盤式制動器結構圖
2.定鉗盤式制動器

定鉗盤式制動器的結構示意圖見右圖。跨置在制動盤1上的制動鉗體5固定安裝在車橋6上,它不能旋轉也不能沿制動盤軸線方向移動,其內的兩個活塞2分別位於制動盤1的兩側。制動時,制動油液由制動總泵(制動主缸)經進油口4進入鉗體中兩個相通的液壓腔中,將兩側的制動塊3壓向與車輪固定連接的制動盤1,從而產生制動。
這種制動器存在著以下缺點:油缸較多,使制動鉗結構復雜;油缸分置於制動盤兩側,必須用跨越制動盤的鉗內油道或外部油管來連通,這使得制動鉗的尺寸過大,難以安裝在現代化轎車的輪輞內;熱負荷大時,油缸和跨越制動盤的油管或油道中的制動液容易受熱汽化;若要兼用於駐車制動,則必須加裝一個機械促動的駐車制動鉗。
圖D-ZD-14定鉗盤式制動器示意圖

1.制動盤 2.活塞 3.摩擦塊 4.進油口 5.制動鉗體 6.車橋部

3.浮鉗盤式制動器

右圖所示為浮鉗盤式制動器示意圖,制動鉗體2通過導向銷6與車橋7相連,可以相對於制動盤1軸向移動。制動鉗體只在制動盤的內側設置油缸,而外側的制動塊則附裝在鉗體上。制動時,液壓油通過進油口5進入制動油缸,推動活塞4及其上的摩擦塊向右移動,並壓到制動盤上,並使得油缸連同制動鉗體整體沿銷釘向左移動,直到制動盤右側的摩擦塊也壓到制動盤上夾住制動盤並使其制動。
與定鉗盤式制動器相反,浮鉗盤式制動器軸向和徑向尺寸較小,而且制動液受熱汽化的機會較少。此外,浮鉗盤式制動器在兼充行車和駐車制動器的情況下,只須在行車制動鉗油缸附近加裝一些用以推動油缸活塞的駐車制動機械傳動零件即可。故自70年代以來,浮鉗盤式制動器逐漸取代了定鉗盤式制動器。
圖D-ZD-15浮鉗盤式制動器示意圖

1.制動盤 2.制動鉗體 3.摩擦塊 4.活塞 5.進油口 6.導向銷 7.車橋

4.盤式制動器的特點

盤式制動器與鼓式制動器相比,有以下優點:一般無摩擦助勢作用,因而制動器效能受摩擦系數的影響較小,即效能較穩定;浸水後效能降低較少,而且只須經一兩次制動即可恢復正常;在輸出制動力矩相同的情況下,尺寸和質量一般較小;制動盤沿厚度方向的熱膨脹量極小,不會象制動鼓的熱膨脹那樣使制動器間隙明顯增加而導致制動踏板行程過大;較容易實現間隙自動調整,其他保養修理作業也較簡便。對於鉗盤式制動器而言,因為制動盤外露,還有散熱良好的優點。盤式制動器不足之處是效能較低,故用於液壓制動系統時所需制動促動管路壓力較高,一般要用伺服裝置。
目前,盤式制動器已廣泛應用於轎車,但除了在一些高性能轎車上用於全部車輪以外,大都只用作前輪制動器,而與後輪的鼓式制動器配合,以期汽車有較高的制動時的方向穩定性。在貨車上,盤式制動器也有採用,但離普及還有相當距離。

四、駐車制動機構

按在汽車上安裝位置的不同,駐車制動裝置分中央駐車制動裝置和車輪駐車制動裝置兩類。前者的制動器安裝在傳動軸上,稱為中央制動器;後者和行車制動裝置共用一套制動器,結構簡單緊湊,已在轎車上得到普遍應用。
右圖為一盤鼓組合式制動器。這種制動器將一個作行車制動器的盤式制動器和一個作駐車制動器的鼓式制動器組合在一起。雙作用制動盤2的外緣盤作盤式制動器的制動盤,中間的鼓部作鼓式制動器的制動鼓。
進行駐車制動時,將駕駛室中的手動駐車制動操縱桿拉到制動位置,經一些列杠桿和拉繩傳動,將駐車制動杠桿的下端向前拉,使之繞平頭銷轉動,其中間支點推動制動推桿左移,將前制動蹄推向制動鼓。待前制動蹄壓靠到制動鼓上之後,推桿停止移動,此時制動杠桿繞中間支點繼續轉動。於是制動杠桿的上端向右移動,使後制動蹄壓靠到制動鼓上,施以駐車制動。
解除制動時,將駐車制動操縱桿推回到不制動的位置,制動杠桿在卷繞在拉繩回位彈簧的作用下回位,同時制動蹄回位彈簧將兩制動蹄拉攏。
圖D-ZD-16制動器駐車制動機構

3.頂桿組件 4.制動蹄 5.軸銷 6.駐車制動推桿 7.推桿彈簧 8.拉繩及彈簧 9.制動襯片 10.駐車制動杠桿

五、制動器的間隙自調裝置

制動蹄在不工作的原始位置時,其摩擦片與制動鼓間應有合適的間隙,其設定值由汽車製造廠規定,一般在0.25~0.5mm之間。任何制動器摩擦副中的這一間隙(以下簡稱制動器間隙)如果過小,就不易保證徹底解除制動,造成摩擦副拖磨;過大又將使制動踏板行程太長,以致駕駛員操作不便,也會推遲制動器開始起作用的時刻。但在制動器工作過程中,摩擦片的不斷磨損將導致制動器間隙逐漸增大。情況嚴重時,即使將制動踏板踩到下極限位置,也產生不了足夠的制動力矩。目前,大多數轎車都裝有制動器間隙自調裝置,也有一些載貨汽車仍採用手工調節。

制動器間隙調整是汽車保養和修理中的重要項目,按工作過程不同,可分為一次調準式和階躍式兩種。
右圖是一種設在制動輪缸內的摩擦限位式間隙自調裝置。用以限定不制動時制動蹄的內極限位置的限位摩擦環2,裝在輪缸活塞3內端的環槽中,活塞上的環槽或螺旋槽的寬度大於限位摩擦環厚度。活塞相對於摩擦環的最大軸向位移量即為二者之間的間隙。間隙應等於在制動器間隙為設定的標准值時施行完全制動所需的輪缸活塞行程。
制動時,輪缸活塞外移,若制動器間隙由於各種原因增大到超過設定值,則活塞外移到0時,仍不能實現完全制動,但只要輪缸將活塞連同摩擦環繼續推出,直到實現完全制動。這樣,在解除制動時,制動蹄只能回復到活塞與處於新位置的限位摩擦環接觸為止,即制動器間隙為設定值。
圖D-ZD-17帶摩擦限位環的輪缸

1.制動蹄 2.摩擦環 3.活塞

六、制動傳動裝置
目前,轎車上的制動傳動裝置有機械式和液壓式兩種。

1.機械制動傳動裝置
一般,駐車制動系統的機械傳動裝置組成如右圖所示。駐車制動系統與行車制動系統共用後輪制動器7。施行駐車制動時,駕駛員將駐車制動操縱桿1向上扳起,通過平衡杠桿2將駐車制動操縱纜繩3拉緊,促動兩後輪制動器。由於棘爪的單向作用,棘爪與棘爪齒板嚙合後,操縱桿不能反轉,駐車制動桿系能可靠地被鎖定在制動位置。欲解除制動,須先將操縱桿扳起少許,再壓下操縱桿端頭的壓桿按鈕8,通過棘爪壓桿使棘爪離開棘爪齒板。然後將操縱桿向下推到解除制動位置。使棘爪得以將整個駐車機械制動桿系鎖止在解除制動位置。駐車制動系統必須可靠地保證汽車在原地停駐,這一點只有用機械鎖止方法才能實現,因此駐車制動系統多用機械式傳動裝置。
圖D-ZD-18駐車傳動機構組成示意圖

1.操縱桿 2.平衡杠桿 3.拉繩 4.拉繩調整接頭 5.拉繩支架 6.拉繩固定夾 7.制動器

2.液壓傳動裝置

目前,轎車的行車制動系統都採用了液壓傳動裝置,主要由制動主缸(制動總泵)、液壓管路、後輪鼓式制動器中的制動輪缸(制動分泵)、前輪鉗盤式制動器中的液壓缸等組成,見右圖。主缸與輪缸間的連接油管除用金屬管(銅管)外,還採用特製的橡膠制動軟管。各液壓元件之間及各段油管之間還有各種管接頭。制動前,液壓系統中充滿專門配製的制動液。
踩下制動踏板4,制動主缸5將制動液壓入制動輪缸6和制動鉗2,將制動塊推向制動鼓和制動盤。在制動器間隙消失並開始產生制動力矩時,液壓與踏板力方能繼續增長直到完全制動。此過程中,由於在液壓作用下,油管的彈性膨脹變形和摩擦元件的彈性壓縮變形,踏板和輪缸活塞都可以繼續移動一段距離。放開踏板,制動蹄和輪缸活塞在回位彈簧作用下回位,將制動液壓回主缸。
圖D-ZD-19液壓傳動裝置組成示意圖

1.前輪制動器 2.制動鉗 3.制動管路
4.制動踏板機構 5.制動主缸 6.制動輪缸 7.後輪制動器

七、制動助力器

目前,轎車上廣泛裝用真空助力器作為制動助力器,利用發動機喉管處的真空度來幫助駕駛員操縱制動踏板。根據真空助力膜片的多少,真空助力器分為單膜片式和串聯膜片式兩種。

單膜片式 國產轎車都採用此種型式的真空助力器,如右圖。
工作過程:
1. 真空助力器不工作時(圖a),彈簧15將推桿連同柱塞18推到後極限位置(即真空閥開啟),橡膠閥門9則被彈簧壓緊在空氣閥座上10(即空氣閥關閉)。伺服氣室前、後腔經通道A、控制閥腔和通道B互相連通,並與空氣隔絕。在發動機開始工作、且真空單向閥被吸開後,伺服氣室左右兩腔內都產生一定的真空度。
圖D-ZD-20(a) 真空助力器工作原理圖(未工作時)
圖D-ZD-20(b) 真空助力器工作原理圖(中間工作階段)
圖D-ZD-20(c) 真空助力器工作原理圖(充分工作時)
圖D-ZD-20真空助力器工作原理

2. 當制動踏板踩下時,起初氣室膜片座8固定不動,來自踏板機構的操縱力推動控制閥推桿12和控制閥柱塞18相對於膜片座8前移。當柱塞與橡膠反作用盤7之間的間隙消除後,操縱力便經反作用盤7傳給制動主缸推桿2(如下圖)。同時,橡膠閥門9隨同控制閥柱塞前移,直到與膜片座8上的真空閥座接觸為止。此時,伺服氣室前後腔隔絕。
3. 控制閥推桿12繼續推動控制閥柱塞前移,到其上的空氣閥座10離開橡膠閥門9一定距離。外界空氣充入伺服氣室後腔(如下圖),使其真空度降低。在此過程中,膜片20與閥座也不斷前移,直到閥門重新與空氣閥座接觸為止。因此在任何一個平衡狀態下,伺服氣室後腔中的穩定真空度與踏板行程成遞增函數關系。

八、氣壓制動系統

以發動機的動力驅動空氣壓縮機作為制動器制動的唯一能源,而駕駛員的體力僅作為控制能源的制動系統稱之為氣壓制動系統。一般裝載質量在8000kg以上的載貨汽車和大客車都使用這種制動裝置。
右圖為一汽車氣壓制動系統示意圖。由發動機驅動的空氣壓縮機(以下簡稱空壓機)1將壓縮空氣經單向閥4首先輸入濕儲氣罐6,壓縮空氣在濕儲氣罐內冷卻並進行?/ca>

『捌』 常用的制動裝置

汽車上用以使外界(主要是路面)在汽車某些部分(主要是車輪)施加一定的力,從而對其進行一定程度的強制制動的一系列專門裝置統稱為制動系統。其作用是:使行駛中的汽車按照駕駛員的要求進行強制減速甚至停車;使已停駛的汽車在各種道路條件下(包括在坡道上)穩定駐車;使下坡行駛的汽車速度保持穩定。
對汽車起制動作用的只能是作用在汽車上且方向與汽車行駛方向相反的外力,而這些外力的大小都是隨機的、不可控制的,因此汽車上必須裝設一系列專門裝置以實現上述功能。

一、制動系統概述

1.制動系可分為如下幾類:

(1) 按制動系統的作用 制動系統可分為行車制動系統、駐車制動系統、應急制動系統及輔助制動系統等。上述各制動系統中,行車制動系統和駐車制動系統是每一輛汽車都必須具備的。
(2) 制動操縱能源 制動系統可分為人力制動系統、動力制動系統和伺服制動系統等。以駕駛員的肌體作為唯一制動能源的制動系統稱為人力制動系統;完全靠由發動機的動力轉化而成的氣壓或液壓形式的勢能進行制動的系統稱為動力制動系統;兼用人力和發動機動力進行制動的制動系統稱為伺服制動系統或助力制動系統。
(3) 按制動能量的傳輸方式 制動系統可分為機械式、液壓式、氣壓式、電磁式等。同時採用兩種以上傳能方式的制動系稱為組合式制動系統。

2.制動系統的一般工作原理

制動系統的一般工作原理是,利用與車身(或車架)相連的非旋轉元件和與車輪(或傳動軸)相連的旋轉元件之間的相互摩擦來阻止車輪的轉動或轉動的趨勢。
可用右圖所示的一種簡單的液壓制動系統示意圖來說明制動系統的工作原理。一個以內圓面為工作表面的金屬制動鼓固定在車輪輪轂上,隨車輪一同旋轉。在固定不動的制動底板上,有兩個支承銷,支承著兩個弧形制動蹄的下端。制動蹄的外圓面上裝有摩擦片。制動底板上還裝有液壓制動輪缸,用油管5與裝在車架上的液壓制動主缸相連通。主缸中的活塞3可由駕駛員通過制動踏板機構來操縱。
當駕駛員踏下制動踏板,使活塞壓縮制動液時,輪缸活塞在液壓的作用下將制動蹄片壓向制動鼓,使制動鼓減小轉動速度,或保持不動。
圖D-ZD-01制動系統工作原理示意圖

1.制動踏板 2.推桿 3.主缸活塞 4.制動主缸 5.油管 6.制動輪缸 7.輪缸活塞 8.制動鼓 9.摩擦片 10.制動蹄 11.制動底板 12.支承銷 13.制動蹄回位彈簧

3.轎車典型制動系統的組成

右圖給出了一種轎車典型制動系統的組成示意圖,可以看出,制動系統一般由制動操縱機構和制動器兩個主要部分組成。
(1) 制動操縱機構 產生制動動作、控制制動效果並將制動能量傳輸到制動器的各個部件,如圖中的2、3、4、6,以及制動輪缸和制動管路。
(2) 制動器 產生阻礙車輛的運動或運動趨勢的力(制動力)的部件。汽車上常用的制動器都是利用固定元件與旋轉元件工作表面的摩擦而產生制動力矩,稱為摩擦制動器。它有鼓式制動器和盤式制動器兩種結構型式。
圖D-ZD-02 轎車典型制動系統組成示意圖

1.前輪盤式制動器 2.制動總泵 3.真空助力器 4.制動踏板機構 5.後輪鼓式制動器 6.制動組合閥 7.制動警示燈

二、制動器——鼓式制動器

1. 概述

一般制動器都是通過其中的固定元件對旋轉元件施加制動力矩,使後者的旋轉角速度降低,同時依靠車輪與地面的附著作用,產生路面對車輪的制動力以使汽車減速。凡利用固定元件與旋轉元件工作表面的摩擦而產生制動力矩的制動器都成為摩擦制動器。目前汽車所用的摩擦制動器可分為鼓式和盤式兩大類。

旋轉元件固裝在車輪或半軸上,即制動力矩直接分別作用於兩側車輪上的制動器稱為車輪制動器。旋轉元件固裝在傳動系的傳動軸上,其制動力矩經過驅動橋再分配到兩側車輪上的制動器稱為中央制動器。

2.領從蹄式制動器

增勢與減勢作用 右圖為領從蹄式制動器示意圖,設汽車前進時制動鼓旋轉方向(這稱為制動鼓正向旋轉)如圖中箭頭所示。沿箭頭方向看去,制動蹄1的支承點3在其前端,制動輪缸6所施加的促動力作用於其後端,因而該制動蹄張開時的旋轉方向與制動鼓的旋轉方向相同。具有這種屬性的制動蹄稱為領蹄。與此相反,制動蹄2的支承點4在後端,促動力加於其前端,其張開時的旋轉方向與制動鼓的旋轉方向相反。具有這種屬性的制動蹄稱為從蹄。當汽車倒駛,即制動鼓反向旋轉時,蹄1變成從蹄,而蹄2則變成領蹄。這種在制動鼓正向旋轉和反向旋轉時,都有一個領蹄和一個從蹄的制動器即稱為領從蹄式制動器。
圖D-ZD-03領從蹄式制動器示意圖

l.領蹄 2.從蹄 3、4.支點 5.制動鼓 6.制動輪缸
圖D-ZD-04領從蹄式制動器受力示意圖
如右圖,制動時兩活塞施加的促動力是相等的。制動時,領蹄1和從蹄2在促動力FS的作用下,分別繞各自的支承點3和4旋轉到緊壓在制動鼓5上。旋轉著的制動鼓即對兩制動蹄分別作用著法向反力N1和N2,以及相應的切向反力T1和T2,兩蹄上的這些力分別為各自的支點3和4的支點反力Sl和S2所平衡。可見,領蹄上的切向合力Tl所造成的繞支點3的力矩與促動力FS所造成的繞同一支點的力矩是同向的。所以力T1的作用結果是使領蹄1在制動鼓上壓得更緊從而力T1也更大。這表明領蹄具有「增勢」作用。相反,從蹄具有「減勢」作用。故二制動蹄對制動鼓所施加的制動力矩不相等。倒車制動時,雖然蹄2變成領蹄,蹄1變成從蹄,但整個制動器的制動效能還是同前進制動時一樣。
在領從式制動器中,兩制動蹄對制動鼓作用力N1』和N2』的大小是不相等的,因此在制動過程中對制動鼓產生一個附加的徑向力。凡制動鼓所受來自二蹄的法向力不能互相平衡的制動器稱為非平衡式制動器。

3.單向雙領蹄式制動器
在制動鼓正向旋轉時,兩蹄均為領蹄的制動器稱為雙領蹄式制動器,其結構示意圖如右圖所示。
雙領蹄式制動器與領從蹄式制動器在結構上主要有兩點不相同,一是雙領蹄式制動器的兩制動蹄各用一個單活塞式輪缸,而領從蹄式制動器的兩蹄共用一個雙活塞式輪缸;二是雙領蹄式制動器的兩套制動蹄、制動輪缸、支承銷在制動底板上的布置是中心對稱的,而領從蹄式制動器中的制動蹄、制動輪缸、支承銷在制動底板上的布置是軸對稱布置的。
圖D-ZD-05雙領蹄式制動器受力示意圖

1. 制動輪缸 2.制動蹄 3.支承銷 4.制動鼓

4.雙向雙領蹄式制動器

無論是前進制動還是倒車制動,兩制動蹄都是領蹄的制動器稱為雙向雙領蹄式制動器,圖5-42是其結構示意圖器。與領從蹄式制動器相比,雙向雙領蹄式制動器在結構上有三個特點,一是採用兩個雙活塞式制動輪缸;二是兩制動蹄的兩端都採用浮式支承,且支點的周向位置也是浮動的;三是制動底板上的所有固定元件,如制動蹄、制動輪缸、回位彈簧等都是成對的,而且既按軸對稱、又按中心對稱布置。
圖D-ZD-06雙向雙領蹄式制動器示意圖

1.制動輪缸 2.制動蹄 3.制動鼓
右圖是一種雙向雙領蹄式制動器的具體結構。在前進制動時,所有的輪缸活塞8都在液壓作用下向外移動,將兩制動蹄6和11壓靠到制動鼓1上。在制動鼓的摩擦力矩作用下,兩蹄都繞車輪中心O朝箭頭所示的車輪旋轉方向轉動,將兩輪缸活塞外端的支座7推回,直到頂靠到輪缸端面為止。此時兩輪缸的支座7成為制動蹄的支點,制動器的工作情況便同圖5-41所示的制動器一樣。
倒車制動時,摩擦力矩的方向相反,使兩制動蹄繞車輪中心O逆箭頭方向轉過一個角度,將可調支座10連同調整螺母9一起推回原位,於是兩個支座10便成為蹄的新支承點。這樣,每個制動蹄的支點和促動力作用點的位置都與前進制動時相反,其制動效能同前進制動時完全一樣。
圖D-ZD-07 雙向雙領蹄式制動器

5.雙從蹄式制動器

前進制動時兩制動蹄均為從蹄的制動器稱為雙從蹄式制動器,其結構示意圖見圖5-44。這種制動器與雙領蹄式制動器結構很相似,二者的差異只在於固定元件與旋轉元件的相對運動方向不同。雖然雙從蹄式制動器的前進制動效能低於雙領蹄式和領從蹄式制動器,但其效能對摩擦系數變化的敏感程度較小,即具有良好的制動效能穩定性。
雙領蹄、雙向雙領蹄、雙從蹄式制動器的固定元件布置都是中心對稱的。如果間隙調整正確,則其制動鼓所受兩蹄施加的兩個法向合力能互相平衡,不會對輪轂軸承造成附加徑向載荷。因此,這三種制動器都屬於平衡式制動器。
圖D-ZD-08 雙從蹄式制動器示意圖

1.支承銷 2.制動蹄 3.制動輪缸 4.制動鼓

6.單向自增力式制動器

單向自增力式制動器的結構原理見右圖。第一制動蹄1和第二制動蹄2的下端分別浮支在浮動的頂桿6的兩端。
汽車前進制動時,單活塞式輪缸將促動力FS1加於第一蹄,使其上壓靠到制動鼓3上。第一蹄是領蹄,並且在各力作用下處於平衡狀態。頂桿6是浮動的,將與力S1大小相等、方向相反的促動力FS2施於第二蹄。故第二蹄也是領蹄。作用在第一蹄上的促動力和摩擦力通過頂桿傳到第二蹄上,形成第二蹄促動力FS2。對制動蹄1進行受力分析可知,FS2>FS1。此外,力FS2對第二蹄支承點的力臂也大於力FS1對第一蹄支承的力臂。因此,第二蹄的制動力矩必然大於第一蹄的制動力矩。倒車制動時,第一蹄的制動效能比一般領蹄的低得多,第二蹄則因未受促動力而不起制動作用。
圖D-ZD-09單向自增力式制動器
1.第一制動蹄 2. 支承銷 3. 制動鼓 4. 第二制動蹄 5. 可調頂桿體 6.制動輪缸
右圖為一種單向自增力式制動器的具體結構。第一蹄1和第二蹄6的上端被各自的回位彈簧2拉攏,並以鉚於腹板上端兩側的夾板3的內凹弧面支靠著支承銷4。兩蹄的下端分別浮支在可調頂桿兩端的直槽底面上,並用彈簧8拉緊。受法向力較大的第二蹄摩擦片的面積做得比第一蹄的大,使兩蹄的單位壓力相近。
在制動鼓尺寸和摩擦系數相同的條件下,單向自增力式制動器的前進制動效能不僅高於領從蹄式制動器,而且高於雙領蹄式制動器。倒車時整個制動器的制動效能比雙從蹄式制動器的效能還低。
圖D-ZD-10單向自增力式制動器

1.第一制動蹄 2.制動蹄回位彈簧 3.夾板 4.支承銷 5.制動鼓 6.第二制動蹄 7.可調頂桿體 8.拉緊彈簧 9.調整螺釘 10.頂桿套 11.制動輪

7.雙向自增力式制動器

雙向自增力式制動器的結構原理如圖5-47所示。其特點是制動鼓正向和反向旋轉時均能借蹄鼓間的摩擦起自增力作用。它的結構不同於單向自增力式之處主要是採用雙活塞式制動輪缸4,可向兩蹄同時施加相等的促動力FS。制動鼓正向(如箭頭所示)旋轉時,前制動蹄1為第一蹄,後制動蹄3為第二蹄;制動鼓反向旋轉時則情況相反。由圖可見,在制動時,第一蹄只受一個促動力FS而第二蹄則有兩個促動力FS和S,且S>FS。考慮到汽車前進制動的機會遠多於倒車制動,且前進制動時制動器工作負荷也遠大於倒車制動,故後蹄3的摩擦片面積做得較大。
圖D-ZD-11雙向自增力式制動器示意圖

1. 前制動蹄 2.頂桿 3.後制動蹄 4.輪缸 5.支撐銷
圖D-ZD-12雙向自增力式制動器實物
右圖所示的制動器即屬於雙向自增力式制動器。不制動時,兩制動蹄和的上端在回位彈簧的作用下浮支在支承銷上,兩制動蹄的下端在拉簧的作用下浮支在浮動的頂桿兩端的凹槽中。汽車前進制動時,制動輪缸(圖中未畫出)的兩活塞向兩端頂出,使前後制動蹄離開支承銷並壓緊到制動鼓上,於是旋轉著的制動鼓與兩制動蹄之間產生摩擦作用。由於頂桿是浮動的,前後制動蹄及頂桿沿制動鼓的旋轉方向轉過一個角度,直到後制動蹄的上端再次壓到支承銷上。此時制動輪缸促動力進一步增大。由於從蹄受頂桿的促動力大於輪缸的促動力,從蹄上端不會離開支承銷。汽車倒車制動時,制動器的工作情況與上述相反。

8.凸輪式制動器

目前,所有國產汽車及部分外國汽車的氣壓制動系統中,都採用凸輪促動的車輪制動器,而且大多設計成領從蹄式。
圖D-ZD-22 凸輪式制動器
右圖為一凸輪式前輪制動器。制動時,制動調整臂在制動氣室6的推桿作用下,帶動凸輪軸轉動,使得兩制動蹄壓靠到制動鼓上而制動。由於凸輪輪廓的中心對稱性及兩蹄結構和安裝的軸對稱性,凸輪轉動所引起的兩蹄上相應點的位移必然相等。
這種由軸線固定的凸輪促動的領從蹄式制動器是一種等位移式制動器,制動鼓對制動蹄的摩擦使得領蹄端部力圖離開制動凸輪,從蹄端部更加靠緊凸輪。因此,盡管領蹄有助勢作用,從蹄有減勢作用,但對等位移式制動器而言,正是這一差別使得制動效能高的領蹄的促動力小於制動效能低的從蹄的促動力,從而使得兩蹄的制動力矩相等。

9.楔式制動器
楔式制動器中兩蹄的布置可以是領從蹄式。作為制動蹄促動件的制動楔本身的促動裝置可以是機械式、液壓式或氣壓式。
兩制動蹄端部的圓弧面分別浮支在柱塞3和柱塞6的外端面直槽底面上。柱塞3和6的內端面都是斜面,與支於隔架5兩邊槽內的滾輪4接觸。制動時,輪缸活塞15在液壓作用下推使制動楔13向內移動。後者又使二滾輪一面沿柱塞斜面向內滾動,一面推使二柱塞3和6在制動底板7的孔中外移一定距離,從而使制動蹄壓靠到制動鼓上。輪缸液壓一旦撤除,這一系列零件即在制動蹄回位彈簧的作用下各自回位。導向銷1和10用以防止兩柱塞轉動。

10.鼓式制動器小結

以上介紹的各種鼓式制動器各有利弊。就制動效能而言,在基本結構參數和輪缸工作壓力相同的條件下,自增力式制動器由於對摩擦助勢作用利用得最為充分而居首位,以下依次為雙領蹄式、領從蹄式、雙從蹄式。但蹄鼓之間的摩擦系數本身是一個不穩定的因素,隨制動鼓和摩擦片的材料、溫度和表面狀況(如是否沾水、沾油,是否有燒結現象等)的不同可在很大范圍內變化。自增力式制動器的效能對摩擦系數的依賴性最大,因而其效能的熱穩定性最差。
在制動過程中,自增力式制動器制動力矩的增長在某些情況下顯得過於急速。雙向自增力式制動器多用於轎車後輪,原因之一是便於兼充駐車制動器。單向自增力式制動器只用於中、輕型汽車的前輪,因倒車制動時對前輪制動器效能的要求不高。雙從蹄式制動器的制動效能雖然最低,但卻具有最良好的效能穩定性,因而還是有少數華貴轎車為保證制動可靠性而採用(例如英國女王牌轎車)。領從蹄制動器發展較早,其效能及效能穩定性均居於中游,且有結構較簡單等優點,故目前仍相當廣泛地用於各種汽車。

三、制動器——盤式制動器

1. 概述

圖D-ZD-13盤式制動器
盤式制動器摩擦副中的旋轉元件是以端面工作的金屬圓盤,被稱為制動盤。其固定元件則有著多種結構型式,大體上可分為兩類。一類是工作面積不大的摩擦塊與其金屬背板組成的制動塊,每個制動器中有2~4個。這些制動塊及其促動裝置都裝在橫跨制動盤兩側的夾鉗形支架中,總稱為制動鉗。這種由制動盤和制動鉗組成的制動器稱為鉗盤式制動器。另一類固定元件的金屬背板和摩擦片也呈圓盤形,制動盤的全部工作面可同時與摩擦片接觸,這種制動器稱為全盤式制動器。鉗盤式制動器過去只用作中央制動器,但目前則愈來愈多地被各級轎車和貨車用作車輪制動器。全盤式制動器只有少數汽車(主要是重型汽車)採用為車輪制動器。這里只介紹鉗盤式制動器。鉗盤式制動器又可分為定鉗盤式和浮鉗盤式兩類。
盤式制動器結構圖
2.定鉗盤式制動器

定鉗盤式制動器的結構示意圖見右圖。跨置在制動盤1上的制動鉗體5固定安裝在車橋6上,它不能旋轉也不能沿制動盤軸線方向移動,其內的兩個活塞2分別位於制動盤1的兩側。制動時,制動油液由制動總泵(制動主缸)經進油口4進入鉗體中兩個相通的液壓腔中,將兩側的制動塊3壓向與車輪固定連接的制動盤1,從而產生制動。
這種制動器存在著以下缺點:油缸較多,使制動鉗結構復雜;油缸分置於制動盤兩側,必須用跨越制動盤的鉗內油道或外部油管來連通,這使得制動鉗的尺寸過大,難以安裝在現代化轎車的輪輞內;熱負荷大時,油缸和跨越制動盤的油管或油道中的制動液容易受熱汽化;若要兼用於駐車制動,則必須加裝一個機械促動的駐車制動鉗。
圖D-ZD-14定鉗盤式制動器示意圖

1.制動盤 2.活塞 3.摩擦塊 4.進油口 5.制動鉗體 6.車橋部

3.浮鉗盤式制動器

右圖所示為浮鉗盤式制動器示意圖,制動鉗體2通過導向銷6與車橋7相連,可以相對於制動盤1軸向移動。制動鉗體只在制動盤的內側設置油缸,而外側的制動塊則附裝在鉗體上。制動時,液壓油通過進油口5進入制動油缸,推動活塞4及其上的摩擦塊向右移動,並壓到制動盤上,並使得油缸連同制動鉗體整體沿銷釘向左移動,直到制動盤右側的摩擦塊也壓到制動盤上夾住制動盤並使其制動。
與定鉗盤式制動器相反,浮鉗盤式制動器軸向和徑向尺寸較小,而且制動液受熱汽化的機會較少。此外,浮鉗盤式制動器在兼充行車和駐車制動器的情況下,只須在行車制動鉗油缸附近加裝一些用以推動油缸活塞的駐車制動機械傳動零件即可。故自70年代以來,浮鉗盤式制動器逐漸取代了定鉗盤式制動器。
圖D-ZD-15浮鉗盤式制動器示意圖

1.制動盤 2.制動鉗體 3.摩擦塊 4.活塞 5.進油口 6.導向銷 7.車橋

4.盤式制動器的特點

盤式制動器與鼓式制動器相比,有以下優點:一般無摩擦助勢作用,因而制動器效能受摩擦系數的影響較小,即效能較穩定;浸水後效能降低較少,而且只須經一兩次制動即可恢復正常;在輸出制動力矩相同的情況下,尺寸和質量一般較小;制動盤沿厚度方向的熱膨脹量極小,不會象制動鼓的熱膨脹那樣使制動器間隙明顯增加而導致制動踏板行程過大;較容易實現間隙自動調整,其他保養修理作業也較簡便。對於鉗盤式制動器而言,因為制動盤外露,還有散熱良好的優點。盤式制動器不足之處是效能較低,故用於液壓制動系統時所需制動促動管路壓力較高,一般要用伺服裝置。
目前,盤式制動器已廣泛應用於轎車,但除了在一些高性能轎車上用於全部車輪以外,大都只用作前輪制動器,而與後輪的鼓式制動器配合,以期汽車有較高的制動時的方向穩定性。在貨車上,盤式制動器也有採用,但離普及還有相當距離。

四、駐車制動機構

按在汽車上安裝位置的不同,駐車制動裝置分中央駐車制動裝置和車輪駐車制動裝置兩類。前者的制動器安裝在傳動軸上,稱為中央制動器;後者和行車制動裝置共用一套制動器,結構簡單緊湊,已在轎車上得到普遍應用。
右圖為一盤鼓組合式制動器。這種制動器將一個作行車制動器的盤式制動器和一個作駐車制動器的鼓式制動器組合在一起。雙作用制動盤2的外緣盤作盤式制動器的制動盤,中間的鼓部作鼓式制動器的制動鼓。
進行駐車制動時,將駕駛室中的手動駐車制動操縱桿拉到制動位置,經一些列杠桿和拉繩傳動,將駐車制動杠桿的下端向前拉,使之繞平頭銷轉動,其中間支點推動制動推桿左移,將前制動蹄推向制動鼓。待前制動蹄壓靠到制動鼓上之後,推桿停止移動,此時制動杠桿繞中間支點繼續轉動。於是制動杠桿的上端向右移動,使後制動蹄壓靠到制動鼓上,施以駐車制動。
解除制動時,將駐車制動操縱桿推回到不制動的位置,制動杠桿在卷繞在拉繩回位彈簧的作用下回位,同時制動蹄回位彈簧將兩制動蹄拉攏。
圖D-ZD-16制動器駐車制動機構

3.頂桿組件 4.制動蹄 5.軸銷 6.駐車制動推桿 7.推桿彈簧 8.拉繩及彈簧 9.制動襯片 10.駐車制動杠桿

五、制動器的間隙自調裝置

制動蹄在不工作的原始位置時,其摩擦片與制動鼓間應有合適的間隙,其設定值由汽車製造廠規定,一般在0.25~0.5mm之間。任何制動器摩擦副中的這一間隙(以下簡稱制動器間隙)如果過小,就不易保證徹底解除制動,造成摩擦副拖磨;過大又將使制動踏板行程太長,以致駕駛員操作不便,也會推遲制動器開始起作用的時刻。但在制動器工作過程中,摩擦片的不斷磨損將導致制動器間隙逐漸增大。情況嚴重時,即使將制動踏板踩到下極限位置,也產生不了足夠的制動力矩。目前,大多數轎車都裝有制動器間隙自調裝置,也有一些載貨汽車仍採用手工調節。

制動器間隙調整是汽車保養和修理中的重要項目,按工作過程不同,可分為一次調準式和階躍式兩種。
右圖是一種設在制動輪缸內的摩擦限位式間隙自調裝置。用以限定不制動時制動蹄的內極限位置的限位摩擦環2,裝在輪缸活塞3內端的環槽中,活塞上的環槽或螺旋槽的寬度大於限位摩擦環厚度。活塞相對於摩擦環的最大軸向位移量即為二者之間的間隙。間隙應等於在制動器間隙為設定的標准值時施行完全制動所需的輪缸活塞行程。
制動時,輪缸活塞外移,若制動器間隙由於各種原因增大到超過設定值,則活塞外移到0時,仍不能實現完全制動,但只要輪缸將活塞連同摩擦環繼續推出,直到實現完全制動。這樣,在解除制動時,制動蹄只能回復到活塞與處於新位置的限位摩擦環接觸為止,即制動器間隙為設定值。
圖D-ZD-17帶摩擦限位環的輪缸

1.制動蹄 2.摩擦環 3.活塞

六、制動傳動裝置
目前,轎車上的制動傳動裝置有機械式和液壓式兩種。

1.機械制動傳動裝置
一般,駐車制動系統的機械傳動裝置組成如右圖所示。駐車制動系統與行車制動系統共用後輪制動器7。施行駐車制動時,駕駛員將駐車制動操縱桿1向上扳起,通過平衡杠桿2將駐車制動操縱纜繩3拉緊,促動兩後輪制動器。由於棘爪的單向作用,棘爪與棘爪齒板嚙合後,操縱桿不能反轉,駐車制動桿系能可靠地被鎖定在制動位置。欲解除制動,須先將操縱桿扳起少許,再壓下操縱桿端頭的壓桿按鈕8,通過棘爪壓桿使棘爪離開棘爪齒板。然後將操縱桿向下推到解除制動位置。使棘爪得以將整個駐車機械制動桿系鎖止在解除制動位置。駐車制動系統必須可靠地保證汽車在原地停駐,這一點只有用機械鎖止方法才能實現,因此駐車制動系統多用機械式傳動裝置。
圖D-ZD-18駐車傳動機構組成示意圖

1.操縱桿 2.平衡杠桿 3.拉繩 4.拉繩調整接頭 5.拉繩支架 6.拉繩固定夾 7.制動器

2.液壓傳動裝置

目前,轎車的行車制動系統都採用了液壓傳動裝置,主要由制動主缸(制動總泵)、液壓管路、後輪鼓式制動器中的制動輪缸(制動分泵)、前輪鉗盤式制動器中的液壓缸等組成,見右圖。主缸與輪缸間的連接油管除用金屬管(銅管)外,還採用特製的橡膠制動軟管。各液壓元件之間及各段油管之間還有各種管接頭。制動前,液壓系統中充滿專門配製的制動液。
踩下制動踏板4,制動主缸5將制動液壓入制動輪缸6和制動鉗2,將制動塊推向制動鼓和制動盤。在制動器間隙消失並開始產生制動力矩時,液壓與踏板力方能繼續增長直到完全制動。此過程中,由於在液壓作用下,油管的彈性膨脹變形和摩擦元件的彈性壓縮變形,踏板和輪缸活塞都可以繼續移動一段距離。放開踏板,制動蹄和輪缸活塞在回位彈簧作用下回位,將制動液壓回主缸。
圖D-ZD-19液壓傳動裝置組成示意圖

1.前輪制動器 2.制動鉗 3.制動管路
4.制動踏板機構 5.制動主缸 6.制動輪缸 7.後輪制動器

七、制動助力器

目前,轎車上廣泛裝用真空助力器作為制動助力器,利用發動機喉管處的真空度來幫助駕駛員操縱制動踏板。根據真空助力膜片的多少,真空助力器分為單膜片式和串聯膜片式兩種。

單膜片式 國產轎車都採用此種型式的真空助力器,如右圖。
工作過程:
1. 真空助力器不工作時(圖a),彈簧15將推桿連同柱塞18推到後極限位置(即真空閥開啟),橡膠閥門9則被彈簧壓緊在空氣閥座上10(即空氣閥關閉)。伺服氣室前、後腔經通道A、控制閥腔和通道B互相連通,並與空氣隔絕。在發動機開始工作、且真空單向閥被吸開後,伺服氣室左右兩腔內都產生一定的真空度。
圖D-ZD-20(a) 真空助力器工作原理圖(未工作時)
圖D-ZD-20(b) 真空助力器工作原理圖(中間工作階段)
圖D-ZD-20(c) 真空助力器工作原理圖(充分工作時)
圖D-ZD-20真空助力器工作原理

2. 當制動踏板踩下時,起初氣室膜片座8固定不動,來自踏板機構的操縱力推動控制閥推桿12和控制閥柱塞18相對於膜片座8前移。當柱塞與橡膠反作用盤7之間的間隙消除後,操縱力便經反作用盤7傳給制動主缸推桿2(如下圖)。同時,橡膠閥門9隨同控制閥柱塞前移,直到與膜片座8上的真空閥座接觸為止。此時,伺服氣室前後腔隔絕。
3. 控制閥推桿12繼續推動控制閥柱塞前移,到其上的空氣閥座10離開橡膠閥門9一定距離。外界空氣充入伺服氣室後腔(如下圖),使其真空度降低。在此過程中,膜片20與閥座也不斷前移,直到閥門重新與空氣閥座接觸為止。因此在任何一個平衡狀態下,伺服氣室後腔中的穩定真空度與踏板行程成遞增函數關系。

八、氣壓制動系統

以發動機的動力驅動空氣壓縮機作為制動器制動的唯一能源,而駕駛員的體力僅作為控制能源的制動系統稱之為氣壓制動系統。一般裝載質量在8000kg以上的載貨汽車和大客車都使用這種制動裝置。
右圖為一汽車氣壓制動系統示意圖。由發動機驅動的空氣壓縮機(以下簡稱空壓機)1將壓縮空氣經單向閥4首先輸入濕儲氣罐6,壓縮空氣在濕儲氣罐內冷卻並進行

『玖』 拖拉機掛檔起步松離合嘣嘣的響是怎麼回事

 
離合器有異響的現象及故障原因: 
現象:在使用或不使用離合器時,有不正常的響聲產生。 
原因
1.分離軸承磨損嚴重或缺油 
2.分離杠桿的支撐銷磨損過大 
3.從動盤鋼片鉚釘松動,鋼片斷裂或減震彈簧折斷、松曠 
4.軸承回位彈簧過軟、折斷或脫落 
5.從動盤花鍵與花鍵軸配合松曠 

『拾』 杠桿銷釘式安全閥銷釘怎樣選擇

銷釘是機械中常見的緊固件之一,作用是防止兩個零件的相對位置錯動。 1、銷釘通常由圓柱形的木材、金屬或其他材料做的零件,尤指用以將幾個單獨的物件固定在一起或作為一個物件懸在另一物件上的支撐物。指設備或管道外壁安設配有自鎖緊板或螺母

閱讀全文

與杠桿支撐銷相關的資料

熱點內容
p2p投資與理財平台 瀏覽:44
外匯盈利三個月 瀏覽:161
北京常青集團董 瀏覽:263
2015年1月5歐元對人民幣匯率中間價 瀏覽:34
法人金融機構壓力測試報告 瀏覽:976
匯付天下活期理財收益 瀏覽:254
怎麼提高外匯儲備安全 瀏覽:514
證券公司的工作掙錢嗎 瀏覽:719
我的金融服務三農的主力軍是 瀏覽:543
比亞迪四家上市公司 瀏覽:570
商業銀行杠桿率流動性 瀏覽:978
股票跌得死 瀏覽:982
光大永明人壽傭金怎樣計算 瀏覽:332
期貨保證金返還嗎 瀏覽:917
股票投資區 瀏覽:136
中國五礦集團株洲 瀏覽:703
力嘉集團有些什麼部門 瀏覽:859
我國投融資管理有限公司 瀏覽:382
中信銀行理財為什麼收益率高 瀏覽:15
國內COF材料供應上市公司 瀏覽:248