導航:首頁 > 匯率傭金 > Python爬機構持倉

Python爬機構持倉

發布時間:2022-05-13 13:06:30

㈠ 如何用python 爬蟲抓取金融數據

獲取數據是數據分析中必不可少的一部分,而網路爬蟲是是獲取數據的一個重要渠道之一。鑒於此,我拾起了Python這把利器,開啟了網路爬蟲之路。

本篇使用的版本為python3.5,意在抓取證券之星上當天所有A股數據。程序主要分為三個部分:網頁源碼的獲取、所需內容的提取、所得結果的整理。

一、網頁源碼的獲取

很多人喜歡用python爬蟲的原因之一就是它容易上手。只需以下幾行代碼既可抓取大部分網頁的源碼。

為了減少干擾,我先用正則表達式從整個頁面源碼中匹配出以上的主體部分,然後從主體部分中匹配出每隻股票的信息。代碼如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之間的所有代碼pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之間的所有信息

其中compile方法為編譯匹配模式,findall方法用此匹配模式去匹配出所需信息,並以列表的方式返回。正則表達式的語法還挺多的,下面我只羅列所用到符號的含義。

語法 說明

. 匹配任意除換行符「 」外的字元

* 匹配前一個字元0次或無限次

? 匹配前一個字元0次或一次

s 空白字元:[<空格> fv]

S 非空白字元:[^s]

[...] 字元集,對應的位置可以是字元集中任意字元

(...) 被括起來的表達式將作為分組,裡面一般為我們所需提取的內容

正則表達式的語法挺多的,也許有大牛隻要一句正則表達式就可提取我想提取的內容。在提取股票主體部分代碼時發現有人用xpath表達式提取顯得更簡潔一些,看來頁面解析也有很長的一段路要走。

三、所得結果的整理

通過非貪婪模式(.*?)匹配>和<之間的所有數據,會匹配出一些空白字元出來,所以我們採用如下代碼把空白字元移除。

stock_last=stock_total[:] #stock_total:匹配出的股票數據for data in stock_total: #stock_last:整理後的股票數據
if data=='':
stock_last.remove('')

最後,我們可以列印幾列數據看下效果,代碼如下

print('代碼',' ','簡稱',' ',' ','最新價',' ','漲跌幅',' ','漲跌額',' ','5分鍾漲幅')for i in range(0,len(stock_last),13): #網頁總共有13列數據
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

㈡ Python 如何爬股票數據

現在都不用爬數據拉,很多量化平台能提供數據介面的服務。像比如基礎金融數據,包括滬深A股行情數據,上市公司財務數據,場內基金數據,指數數據,期貨數據以及宏觀經濟數據;或者Alpha特色因子,技術分析指標因子,股票tick數據以及網路因子數據這些數據都可以在JQData這種數據服務中找到的。
有的供應商還能提供level2的行情數據,不過這種比較貴,幾萬塊一年吧

㈢ python爬蟲一般都爬什麼信息

python爬蟲一般都爬什麼信息?
一般說爬蟲的時候,大部分程序員潛意識里都會聯想為Python爬蟲,為什麼會這樣,我覺得有兩個原因:
1.Python生態極其豐富,諸如Request、Beautiful Soup、Scrapy、PySpider等第三方庫實在強大
2.Python語法簡潔易上手,分分鍾就能寫出一個爬蟲(有人吐槽Python慢,但是爬蟲的瓶頸和語言關系不大)
爬蟲是一個程序,這個程序的目的就是為了抓取萬維網信息資源,比如你日常使用的谷歌等搜索引擎,搜索結果就全都依賴爬蟲來定時獲取
看上述搜索結果,除了wiki相關介紹外,爬蟲有關的搜索結果全都帶上了Python,前人說Python爬蟲,現在看來果然誠不欺我~
爬蟲的目標對象也很豐富,不論是文字、圖片、視頻,任何結構化非結構化的數據爬蟲都可以爬取,爬蟲經過發展,也衍生出了各種爬蟲類型:
● 通用網路爬蟲:爬取對象從一些種子 URL 擴充到整個 Web,搜索引擎乾的就是這些事
● 垂直網路爬蟲:針對特定領域主題進行爬取,比如專門爬取小說目錄以及章節的垂直爬蟲
● 增量網路爬蟲:對已經抓取的網頁進行實時更新
● 深層網路爬蟲:爬取一些需要用戶提交關鍵詞才能獲得的 Web 頁面
不想說這些大方向的概念,讓我們以一個獲取網頁內容為例,從爬蟲技術本身出發,來說說網頁爬蟲,步驟如下:
模擬請求網頁資源
從HTML提取目標元素
數據持久化
相關推薦:《Python教程》以上就是小編分享的關於python爬蟲一般都爬什麼信息的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

㈣ 如何用python計算某支股票持有90天的收益率

首先你要先獲得這支股票90天的數據,可以存在一個arry中。
然後計算收益率 r = (arry[89]-arry[0])/arry[0],如果要計算任意連續90天的話只要循環就可以了。
許多人更喜歡去做短線,因為短線刺激,無法承受長線持股待漲的煎熬,可是假如不會做短線,則可能會導致虧得更快。做T的秘籍大家一定很想知道,今天就給大家講講。
我准備了好處給大家,機構精選的牛股大盤點!希望大家不要錯過--速領!今日機構牛股名單新鮮出爐!
一、股票做T是什麼意思
現在市場上,A股的交易市場模式是T+1,意思就是今天買的股票,只有明天才能賣出。
而股票做T,當天買入的股票在當天賣出,這就是股票進行T+0的交易操作,投資人在可交易的一天通過股票的漲幅和跌停有了股票差價,在股票大幅下跌時趕緊買入,漲得差不多之後再將買入的部分賣出,就是用這種方法賺錢的。
假如說,在昨天我手裡還有1000股的xx股票,市價10元/股。今天一大早發現該股居然跌到了9.5元/股,然後趁機買入了1000股。結果到了下午時,這只股票的價格就突然間大幅上漲到一股10.5元,我就急忙地以10.5/股的價格售出1000股,然後獲取(10.5-9.5)×1000=1000元的差價,這就是做T。
但是,不是每種股票做T都合適!正常來說,那些日內振幅空間較大的股票,它們是適合去做T的,比如說,每日能有5%的振幅空間。想知道某隻股票適不適合的,點開這里去看一下吧,專業的人員會為你估計挑選出最適合你的T股票!【免費】測一測你的股票到底好不好?

二、股票做T怎麼操作
怎麼才能夠把股票做到T?正常情況下分為兩種方式,分別為正T和倒T。
正T即先買後賣,投資手裡,手裡面賺有這款股票,在當天股票開盤的時候下跌到了最低點時,投資者買入1000股,等到股票變高的時候在高點,將這1000股徹底賣出,持有的總股票數還是跟以前一樣,T+0的效果這樣就能夠達到了,又能夠享有中間賺取的差價。
而倒T即先賣後買。投資者通過嚴密計算得出,股票存在下降風險,因此在高位點先賣出手中的一部分股票,接著等股價回落後再去買進,總量仍舊有辦法保持不變,然而,收益是會產生的。
比方投資者,他佔有該股2000股,而10元/股是當天早上的市場價,覺得持有的股票在短時間內就會有所調整,,於是賣出手中的1500股,等股票跌到一股只需要9.5元時,這只股票差不多就已經能讓他們感到滿意了,再買入1500股,這就賺取了(10-9.5)×1500=750元的差價。
這時有人就問了,那要如何知道買入的時候正好是低點,賣出的時候正好是高點?
其實有一款買賣點捕捉神器,它能夠判斷股票的變化趨勢,絕對能讓你每次都抓住重點,點開鏈接就能立刻領取到了:【智能AI助攻】一鍵獲取買賣機會

應答時間:2021-09-23,最新業務變化以文中鏈接內展示的數據為准,請點擊查看

㈤ 如何用python爬取nba數據中心的數據

爬取的網站為:stat-nba.com,本文爬取的是NBA2016-2017賽季常規賽至2017年1月7日的數據

改變url_header和url_tail即可爬取特定的其他數據。

源代碼如下:

[python]view plain

㈥ 如何使用python 抓取雪球網頁

現在關注一個組合,就會有持倉變動的提示了。不過我覺得這事情挺有意思的。比如可以把很多持倉的數據都抓下來,做一些綜合的分析,看看現在網站上被持有最多的股票是哪一支,某一天被調入最多的又是哪一支之類。
於是我決定來抓抓看,順便藉此說說我通常用程序做自動抓取的過程。
Step.1 分析頁面
要抓一個網頁,首先自然是要「研究」這個網頁。通常我會用兩種方式:
一個是 Chrome 的 Developer Tools。通過它裡面的 Network 功能可以看到頁面發出的所有網路請求,而大多數數據請求都會在 XHR 標簽下。點擊某一個請求,可以看到其具體信息,以及伺服器的返回結果。很多網站在對於某些數據會有專門的請求介面,返回一組 json 或者 XML 格式的數據,供前台處理後顯示。

另一個就是直接查看網頁源代碼。通常瀏覽器的右鍵菜單里都有這個功能。從頁面的 HTML 源碼里直接尋找你要的數據,分析它格式,為抓取做准備。
對於雪球上的一個組合頁面 粗略地看了一下它發出的請求,並沒有如預想那樣直接找到某個數據介面。看源代碼,發現有這樣一段:
SNB.cubeInfo = {"id":10289,"name":"誓把老刀挑下位","symbol":"ZH010389" ...此處略過三千字... "created_date":"2014.11.25"}
SNB.cubePieData = [{"name":"汽車","weight":100,"color":"#537299"}];

cubeInfo 是一個 json 格式的數據,看上去就是我們需要的內容。一般我會找個格式化 json 的網站把數據復制進去方便查看。

這應該就是組合的持倉數據。那麼接下來,一切似乎都簡單了。只要直接發送網頁請求,然後把其中 cubeInfo 這段文字取出,按 json 讀出數據,就完成了抓取。甚至不用動用什麼 BeautifulSoup、正則表達式。
Step.2 獲取頁面
分析完畢,開抓。
直接 urllib.urlopen 向目標網頁發送請求,讀出網頁。結果,失敗了……
看了下返回結果:
403 Forbidden
You don't have permission to access the URL on this server. Sorry for the inconvenience.

被拒了,所以這種赤裸裸地請求是不行的。沒關系,那就稍微包裝一下:
send_headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.81 Safari/537.36',
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Connection':'keep-alive',
'Host':'xueqiu.com',
'Cookie':r'xxxxxx',
}
req = urllib2.Request(url, headers=send_headers)
resp = urllib2.urlopen(req)
html = resp.read()

header 數據都可以從 Developer Tools 里拿到。這次順利抓到頁面內容。
一般網站或多或少都會對請求來源做一些阻攔,通過加 header 可以搞定大部分情況。
Step.3 提取數據
因為這個數據比較明顯,直接用通過一些字元串查找和截取操作就可以取出來。
pos_start = html.find('SNB.cubeInfo = ') + len('SNB.cubeInfo = ')
pos_end = html.find('SNB.cubePieData')
data = html[pos_start:pos_end]
dic = json.loads(data)

dic 就是一個包含數據的字典對象。之後想干什麼就隨便你了。
對於復雜一點的情況,可以通過 BeautifulSoup 來定位 html 標簽。再不好辦的,就用正則表達式,基本都可以解決掉。
Step.4 處理數據
因為我想對數據進行持久化存儲,並且做展示和分析,所以我用了 django 里的 ORM 來處理抓下來的數據。
# add Portfolio
portfolio, c = models.Portfolio.objects.get_or_create(code=dic['symbol'])
portfolio.name = dic['name']
portfolio.earnings = dic['total_gain']
portfolio.save()
# add Stock
stocks = dic['view_rebalancing']['holdings']
for s in stocks:
stock, c = models.Stock.objects.get_or_create(code=s['stock_symbol'])
stock.name = s['stock_name']
stock.count += 1
stock.weight += s['weight']
stock.save()

Portfolio 記錄下組合及其收益,Stock則記錄每支股票的被收錄數和總收錄份額。
對於抓取到的,一般也可以存在文件中,或者直接通過 SQL 存入資料庫,視不同情況和個人喜好而定。
Step.5 批量抓取
前面的一套做下來,就完整地抓取了一組數據。要達到目的,還要設計一下批量抓取的程序。
一個要解決的問題就是如何獲得組合列表。這個可以再通過另一個抓取程序來實現。然後根據這些列表來循環抓取就可以了。
若要細究,還要考慮列表如何保存和使用,如何處理抓取失敗和重復抓取,如何控制抓取頻率防止被封,可否並行抓取等等。
Step.6 數據分析
數據有了,你要怎麼用它,這是個很大的問題。可以簡單的統計現象,也可以想辦法深入分析背後隱藏的邏輯。不多說,我也還只是在摸索之中。

㈦ python爬蟲爬取的數據可以做什麼

爬蟲的概念是,爬取網上能看到的數據,也就是只要網上存在的,通過瀏覽器可以看到的數據。爬蟲都可以爬取。爬蟲爬取的原理就是偽裝成瀏覽器,然後進行爬取操作

哪些數據你需要你就可以爬取。比如爬取公司競爭對手的商業數據,爬取電影,音樂,圖片等等的。只要你希望得到的,前提瀏覽器可以訪問的都可以爬取

㈧ 怎麼學python爬取財經信息

本程序使用Python 2.7.6編寫,擴展了Python自帶的HTMLParser,自動根據預設的股票代碼列表,從Yahoo Finance抓取列表中的數據日期、股票名稱、實時報價、當日變化率、當日最低價、當日最高價。

由於Yahoo Finance的股票頁面中的數值都有相應id。

例如納斯達克100指數ETF(QQQ)
其中實時報價的HTML標記為

[html]view plain

㈨ 如何用Python寫一個抓取天天基金網上每個基金經理業績的爬蟲

摘要 親您好,很高興為您解答,語言:python

閱讀全文

與Python爬機構持倉相關的資料

熱點內容
怎麼看余額寶理財產品在哪 瀏覽:943
重慶國際信託有限公司股票 瀏覽:108
000937增發價格 瀏覽:963
建行杠桿保證金炒外匯 瀏覽:454
金融機構支持疫情防控工作 瀏覽:164
境外匯款可以 瀏覽:242
房地產融資特點有哪些內容 瀏覽:422
中信證券的基本面分析 瀏覽:84
雁盛實業股票 瀏覽:239
外匯期貨交易商 瀏覽:57
上海潤欣科技股份有限公司怎麼樣 瀏覽:676
金融理財顧問公司 瀏覽:635
做深做優金融服務 瀏覽:653
境外股東質押股票 瀏覽:82
2016商品期貨分析報告 瀏覽:566
哪家證劵公司理財短期好 瀏覽:827
從金融公司套取首付貸 瀏覽:839
國檢集團漲停 瀏覽:213
金融服務費用的進項稅是否可抵扣 瀏覽:148
投融資規劃報告 瀏覽:934