1. 怎麼做股票模型
我也曾今也想到過這個問題。但是,告訴你一個不幸的消息,股票不可以用模型製作,我以前試過用指數模型和高斯分布做過,但後來去給一個博士談到這個問題的時候。最終達成一致共識,股票不能建立模型。只能在股票和其他衍生工具之間建立交易模型,例如capm,b-s模型。如果是老師布置的作業,你就給她說,不能建立模型。
2. 股票模型的建模過程
模型准備 :了解個股的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設 :根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立 :在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具)
模型求解 :利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析 :對所得的結果進行數學上的分析。
模型檢驗 :將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,在次重復建模過程。
模型應用 :應用方式因問題的性質和建模的目的而異。
3. 股票選股模型推薦
最簡單的一種;底部放量+形成趨勢級別上漲
現在的中百集團
之前的600436
另外一種;題材概念選股
4. 股票投資數學建模問題
風險最小就是相關系數之和最小的方案吧
投資回報率和風險的關系,就是收益期望和相關系數之間的函數
數學不好,只能亂說說了
5. 股票意向數學建模
應該是由買賣雙方的集合竟價決定每天開盤成交價
6. 如何設計股票模型
股票模型就是對於現實中的個股,為了達到盈利目的,作出一些必要的簡化和假設,運用適當的數學分析,得到一個數學結構。
股票建模是利用數學語言(符號、式子與圖象)模擬現實的模型。把現實模型抽象、簡化為某種數學結構是數學模型的基本特徵。它或者能解釋特定現象的現實狀態,或者能預測到對象的未來狀況,或者能提供處理對象的最優決策或控制。
建模過程
模型准備 :了解個股的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設 :根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立 :在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具)
模型求解 :利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析 :對所得的結果進行數學上的分析。
模型檢驗 :將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,在次重復建模過程。
模型應用 :應用方式因問題的性質和建模的目的而異。
7. 對於股票風險投資,如何建模求解
很多人採用的一種比較保守的投資方式是金字塔投資方式,這種方式相對是一種盈利比較可回靠的操答作方法,但是對資金也有一定要求,後續資金要比較充足,把資金分成10份分批進入,進入時1階段買入4份,2階段買入3份,3階段買入2分4階段買入1份,頂部買出時用相反的方式賣出。就形成了一個正三角和一個倒三角,由於在底部買入份額最多,高位買出份額最多,中間的就是利潤,這種方式既可最大可能避免踏空又可最大可能避免深套,缺陷是沒有短期內暴利的機會。但是在股市裡生存,安全比盈利更重要,穩健的操作方法才是真正的暴利
8. 什麼叫股票模型
股票模型就是對於現實中的個股,為了達到盈利目的,作出一些必要的簡化和假設,運用適當的數學分析,得到一個數學結構。
股票模型:
股票建模是利用數學語言(符號、式子與圖象)模擬現實的模型。把現實模型抽象、簡化為某種數學結構是數學模型的基本特徵。它或者能解釋特定現象的現實狀態,或者能預測到對象的未來狀況,或者能提供處理對象的最優決策或控制。
把個股的實際問題加以提煉,抽象為數學模型,求出模型的解,驗證模型的合理性,並用該數學模型所提供的解答來解釋現實問題,我們把這一應用過程稱為股票建模。
建模過程:
模型准備 :了解個股的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設 :根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立 :在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具)
模型求解 :利用獲取的數據資料,對模型的所有參數做出計算(估計)。
模型分析 :對所得的結果進行數學上的分析。
模型檢驗 :將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,在次重復建模過程。
模型應用 :應用方式因問題的性質和建模的目的而異。
9. 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。
10. 求股票建模入門篇。從哪些元素入手。
股票主要是心態~
如果是初學,還是多模似然後再做真實的。
金融人網 有初級股票班課程