Ⅰ fama-macbeth 統計量什麼意思
Famaand MacBeth(1973,FM)提出了檢驗CAPM的方法,該方法不僅僅用於檢驗CAPM,而且可用於多因素定價模型檢驗,其滾動回歸的思想還應用於預測。CAPM指預期報酬E(R)與風險間存在著線性關系,這種關系能用於解釋橫斷面預期報酬,Famaand MacBeth(1973)第一個提出了橫斷面回歸的思路。檢驗CAPM模型為R0為零-Beta證券報酬,與市場投資組合報酬無關。式表明證券i的預期報酬是零-Beta證券預期報酬R0加風險報酬,Rm為所有股票等權重的報酬。
Ⅱ 股票的波動性是按什麼指標算的
股票的波動性是按波動率指數算的,芝加哥期權交易所(Chicago Board Options Exchange,CBOE)的波動率指數(Volatility Index,VIX)或者稱之為「恐懼指數」,衡量標准普爾500指數(S&P 500 Index)期權的隱含波動率。VIX指數每日計算,代表市場對未來30天的市場波動率的預期。
類型:
1、實際波動率
實際波動率又稱作未來波動率,它是指對期權有效期內投資回報率波動程度的度量,由於投資回報率是一個隨機過程,實際波動率永遠是一個未知數。或者說,實際波動率是無法事先精確計算的,人們只能通過各種辦法得到它的估計值。
2、歷史波動率
歷史波動率是指投資回報率在過去一段時間內所表現出的波動率,它由標的資產市場價格過去一段時間的歷史數據(即St的時間序列資料)反映。這就是說,可以根據{St}的時間序列數據,計算出相應的波動率數據,然後運用統計推斷方法估算回報率的標准差,從而得到歷史波動率的估計值。顯然,如果實際波動率是一個常數,它不隨時間的推移而變化,則歷史波動率就有可能是實際波動率的一個很好的近似。
3、預測波動率
預測波動率又稱為預期波動率,它是指運用統計推斷方法對實際波動率進行預測得到的結果,並將其用於期權定價模型,確定出期權的理論價值。因此,預測波動率是人們對期權進行理論定價時實際使用的波動率。這就是說,在討論期權定價問題時所用的波動率一般均是指預測波動率。需要說明的是,預測波動率並不等於歷史波動率,因為前者是人們對實際波動率的理解和認識,當然,歷史波動率往往是這種理論和認識的基礎。除此之外,人們對實際波動率的預測還可能來自經驗判斷等其他方面。
4、隱含波動率
隱含波動率是期權市場投資者在進行期權交易時對實際波動率的認識,而且這種認識已反映在期權的定價過程中。從理論上講,要獲得隱含波動率的大小並不困難。由於期權定價模型給出了期權價格與五個基本參數(St,X,r,T-t和σ)之間的定量關系,只要將其中前4個基本參數及期權的實際市場價格作為已知量代入期權定價模型,就可以從中解出惟一的未知量σ,其大小就是隱含波動率。因此,隱含波動率又可以理解為市場實際波動率的預期。
期權定價模型需要的是在期權有效期內標的資產價格的實際波動率。相對於當期時期而言,它是一個未知量,因此,需要用預測波動率代替之,一般可簡單地以歷史波動率估計作為預測波動率,但更好的方法是用定量分析與定性分析相結合的方法,以歷史波動率作為初始預測值,根據定量資料和新得到的實際價格資料,不斷調整修正,確定出波動率。
Ⅲ 股票和統計學的關系。
和統計學的確是有關,但是這個統計不是普通意義上的,而是個性化定製的。
所以你這個問題可以說有解又無解。
在你有了相當水平後,會個個性化總結,然後就有解,你更上一層樓。
在你沒什麼水平的時候,根本無解,要不數學家都成股票高手了。
Ⅳ 標准差(Standard Error)和T統計量(T-Statistic)之間有什麼關系及差異
一、標准差(Standard Error)和T統計量(T-Statistic)之間並沒有直接的關系,兩者是不同性質的數學用語。
1、標准差:標准差能反映一個數據集的離散程度,平均數相同的兩組數據,標准差未必相同。
2、T統計量:用於根據小樣本來估計呈正態分布且方差未知的總體的均值。
二、標准差(Standard Error)和T統計量(T-Statistic)有3點不同:
1、兩者的意義不同:
(1)標准差的意義:由於方差是數據的平方,與檢測值本身相差太大,人們難以直觀的衡量,所以常用方差開根號換算回來這就是我們要說的標准差。
在統計學中樣本的均差多是除以自由度(n-1),它是意思是樣本能自由選擇的程度。當選到只剩一個時,它不可能再有自由了,所以自由度是n-1。
(2)T統計量的意義:t統計量分布曲線形態與n(確切地說與自由度df)大小有關。與標准正態分布曲線相比,自由度df越小,t分布曲線愈平坦,曲線中間愈低,曲線雙側尾部翹得愈高;自由度df愈大,t分布曲線愈接近正態分布曲線,當自由度df=∞時,t分布曲線為標准正態分布曲線。
2、兩者的特徵不同:
(1)標准差的特徵:標准差通常是相對於樣本數據的平均值而定的,通常用M±SD來表示,表示樣本某個數據觀察值相距平均值有多遠.標准差受到極值的影響。標准差越小,表明數據越聚集;標准差越大,表明數據越離散。
(2)T統計量的特徵:以0為中心,左右對稱的單峰分布;t分布是一簇曲線,其形態變化與n(確切地說與自由度df)大小有關。自由度df越小,t分布曲線越低平;自由度df越大,t分布曲線越接近標准正態分布(u分布)曲線;隨著自由度逐漸增大,t分布逐漸接近標准正態分布。
3、兩者的應用不同:
(1)標准差的應用:標准差指統計上用於衡量一組數值中某一數值與其平均值差異程度的指標。標准差被用來評估價格可能的變化或波動程度。標准差越大,價格波動的范圍就越廣,股票等金融工具表現的波動就越大。
(2)T統計量的應用:T統計量是數理統計中的一種重要的理論分布,是許多統計方法的理論基礎。正態分布有兩個參數,μ和σ,決定了正態分布的位置和形態。
Ⅳ 請問如何查詢一隻股票的買入量和賣出量
中國股票波動性的分解實證研究
宋逢明/李翰陽
【摘 要 題】證券市場
【正 文】
一、概述
在金融學領域中,波動特性一直是重要的研究內容。目前對中國股票市場波動性的研究,大多以滬市、深市兩市場指數為對象。得到的結論普遍認為中國股票市場存在較劇烈的波動,與西方尤其是美國較為發達的股票市場相比,中國股票市場的波動顯著大於它們的市場波動。但是分析中國市場的特性後,可以認為分解股票的總體波動性,在股票的市場風險和個別風險兩個層面上對中國股市的波動進行實證研究是具有一定意義的。
首先,市場中有大量的散戶投資者,而其中相當數量的散戶持有大量個股而非投資組合。盡管機構投資者逐漸成為市場的主導力量,但是散戶投資者及其投資總量仍在市場中佔有很大比例。根據markowitz(1952)的資產組合理論,這一類投資者不能夠做到分散化投資,對於他們來說企業個別波動的影響的程度決不亞於市場波動帶來的影響。其次,市場具有高度不完全性,缺乏完善的機制和足夠的金融工具。雖然傳統理論認為20至30隻股票的資產組合可以很好地實現風險的分散化從而消除這些股票的個別風險,但在中國市場中由於缺少做空機制和必要的金融工具,也不能全部做到風險的分散化,構成這一組合的股票的個別風險不可忽視。
除這些特點外,中國市場中的投資理念變化也強調了分解總體波動性的意義:近年來,中國市場中價值投資理念開始逐步被普遍採納,對於某些特定股票的重視被加深,而分散化的做法反而逐漸淡化,所以股票的個別風險情況就顯得尤為重要。還有,中國的市場中存在大量的投機者甚至是賭博者利用某一隻股票在市場中的定價偏差進行套利,此時他們就充分暴露在這一隻股票的個別風險之下,而不是市場的總體風險。而且市場中曾經有嚴重的炒作行為,這類行為也大大影響了股票的個別波動。
基於上述分析,可以認為對於股票的總體波動進行分解,分別對市場波動性和個別波動性進行實證研究是有重要實際意義的。但是,無論是國內還是國外,很少有研究者將總體波動性分解,並同時在不同層面(市場、公司)對波動性進行實證分析。campbell,lettau,malkie和xu(2001)發現,在美國股市中,盡管市場波動並未增加,但是在1962年到1997年間,個別公司的不確定性大大增強了。但是,目前對這一現象的解釋尚無定論。對於中國市場的情況,宋逢明和江婕(2003)得出的結論是1998年以後的中國股票市場的總體風險與s&p500成分股所代表的美國股市相當,但是中國股市中的系統風險一直高於美國市場。
下面我們將先介紹研究中採用的波動分解模型和波動度量的估計方法,然後著重分析不同波動成分的變化趨勢並對其成因進行簡單的分析。
二、波動性的分解模型和估計方法
1.波動性的分解模型
本文的研究中,將一隻股票的收益分解為兩部分:市場收益與個別收益。通過這種分解,我們可以構造衡量個股的兩種波動的度量,這兩種波動之和就是該股票收益的波動,所採用的方法優點在於無需計算股票間的協方差以及個股的β。
根據capm模型,我們可以得到一種個股收益波動的分解方式:
(1)var(r[,it])=β[2][,im]var(r[,mt])+var({圖}[,it])
其中r[,it]為個股的超額收益,r[,mt]為市場超額收益,且capm模型本身有r[,mt]與{圖}[,it]正交。但是這種分解的缺點是難以估計個股的β,且個股β是隨時間變化的。為解決這一問題,下面我們給出一種簡化的模型,該模型不需要個股β的信息。同時,該模型可以對個股收益的方差進行類似於(1)的分解。
首先,考慮如下不需要β的個股收益模型:
(2)r[,it]=r[,mt]+ε[,it]
注意在模型(2)中,r[,mt]與ε[,it]不是正交的,因此在計算個股收益的方差時不能忽略協方差項。根據模型(2),個股收益的方差為:
附圖{圖}然而,這里的方差分解又一次引入了個股的β。
但是,對整個市場內的所有個股收益的方差進行加權平均便消除了帶有個股β的協方差項:
(4)∑[,i]ω[,it]var(r[,it])=var(r[,mt])+∑[,i]ω[,it]var(ε[,it])=σ[2][,mt]+σ[2][,εt]
其中σ[2][,mt]=var(r[,mt]),σ[2][,εt]=∑[,i]ω[,it]var(ε[,it])。根據這種分解方法,我們就可以利用模型(2)中的殘查項ε[,it]來構造一種不需要個股β的平均個別波動度量標准。加權平均波動∑[,i]ω[,it]var(r[,it])可以理解為隨機選取的個股的波動期望值(隨機抽取到股票i的概率等於其在市場中的權重ω[,it])。
2.數據及波動性成分的估計
本文採用在上海證券交易所和深圳證券交易所交易的a股股票數據來估計基於模型(4)的個股超額收益分解所得到的等式(4)中的波動成分量。樣本期從1990年12月19日始,至2001年12月31日終。這一樣本期內,股票數量發生了巨大變化,從期初的8隻增加到期末的1133隻、股票的日交易數據共計1,311,427組。為了得到模型(2)中的個股超額收益(r[,it])和市場超額收益(r[,mt]),採用的無風險收益是人民幣一年期定期存款利率。
為估計等式(4)中的兩種波動成分量,採用下列步驟。令s為計算收益的時間間隔,本文主要採用股票日收益數據進行估計。令t為計算波動的時間間隔,本文中t一般指月。在時間間隔t內的市場收益波動,以mkt[,t]表示,由下式計算:
附圖{圖}
其中μ[,mt]是時間間隔t內市場收益r[,ms]的均值。市場收益是利用時間間隔t內所有個股收益加權平均得到的,取每隻股票當月的流通市值占總流通市值的比例且不考慮現金紅利再投資情況作為該股票的權重。這樣就得到了股票第一部分波動,即市場波動的估計量。
對於股票第二部分波動,即個別因素造成的收益波動,首先要根據公式(4)計算個股超額收益與市場超額收益的差ε[,is]=r[,is]-r[,ms],然後計算個股在時間間隔t內的波動:
附圖{圖}
如前所述,為了消除計算中的個股之間的協方差量,必須對整個市場內的所有個股收益的方差進行加權平均。由此得到了衡量各股票個別因素造成的平均波動的估計量,以firm[,t]表示:
附圖{圖}
經過上述步驟,就得到了衡量市場內個股的市場風險和個別風險的兩個估計量mkt[,t]和firm[,t]。
三、不同波動性成分的趨勢分析
根據上述模型和估計方法,即可對中國市場的股票收益波動情況進行分解研究。首先按照前面的估計方法,估計出市場波動以及個別股票波動這兩部分波動量的大小,進行圖形分析。圖1(a)顯示了中國股市中市場波動成分隨時間變化的情形,包含了在上交所及深交所上市的所有a股股票,並按照流通市值進行加權平均,從圖中可以初步看出市場波動成分有一定的下降趨勢,但是不夠明顯。
圖1(b)對圖1(a)中的數據進行滯後12階(即數據滯後一年)的簡單移動平均,進一步表明市場波動成分有下降的趨勢。1990年至1991年股票樣本數量及交易量太小,波動不明顯,但1992年初,市場波動值約在0.020到0.025之間,至2001年底樣本期末,市場波動值約為0.05。尤其是1994年中期過後,市場波動的下降趨勢更為明顯。
圖2(a)則顯示了中國股市中個別因素波動成分隨時間變化的情形,從圖中可以初步看出個別波動成分隨時間沒有明顯的趨勢。圖2(b)同樣是圖2(a)中數據進行滯後12階移動平均的結果。圖中有一定的趨勢,但是很不明顯。期初波動值約為0.020,至2001年底,波動值約為0.010。從整體上看,圖像較為平緩。
附圖{圖}
圖2 中國股票個別因素波動(firm[,t])
從圖形分析中可以看出,中國股市的市場波動成分在樣本期內有較為明顯的下降趨勢,而個別因素的波動成分在樣本期內有下降,但是不明顯。而且兩列時序數據都有持續的波動,說明其變化趨勢有可能是隨機性的。因此,除了進行圖形分析,要確定兩種波動成分的時間序列數據是否有確定性趨勢,還是僅僅為隨機性趨勢,還需要進一步進行計量經濟學分析。
2.確定性趨勢檢驗
為了便於分析,將市場波動數據進行年度化(即原始月數據乘以12)。第一步先分析他們的自相關結構。
市場波動的自相關系數下降很快,但是在0附近波動,因而不能明顯判斷序列的平穩性,不能排除單位根存在的可能。公司個別波動的自相關函數下降很快,且在0附近基本沒有波動,因而可以初步判斷序列是平穩的,並初步排除單位根存在的可能。
表1 自相關系數
滯後階數 1 2 3 4 5 6 7 8 9 10 11 12
市場波動 0.275 0.145 0.022 0.032 0.025 0.031 0.095 0.087 0.278 -.032 -.018 0.075
公司個別波動 0.021 -.018 0.018 0.049 -.015 0.117 0.062 -.028 0.058 0.015 -.017 -.023
為了檢驗序列是否有單位根,以及是否有確定性趨勢,需要進行adf檢驗。首先,根據campbell & perron(1991)推薦的方法確定滯後階數為9階。表2將市場波動的三種形式adf檢驗模型同時估計出,並給出ρ統計量和τ統計量的檢驗結果:
表2 市場波動的adf檢驗
模型類型 滯後 ρ pr<ρ τ pr<τ f pr>f
無常數項和趨勢項 9 -7.8217 0.0512 -1.69 0.0860
有常數項 9 -33.7582 0.0011 -2.71 0.0751 3.68 0.1339
有常數項和趨勢項 9 -310.761 0.0001 -3.91 0.0144 7.79 0.0141
三種模型的ρ統計量都顯著地拒絕了存在單位根的零假設,在10%的置信水平下,τ統計量也可以拒絕模型1和模型2的存在單位根的零假設。我們主要注意模型3,即包含時間趨勢項的形式,可見ρ統計量和τ統計量都非常顯著地拒絕了存在單位根的零假設;而且f統計量表明整個模型是顯著的。
對模型3進行普通ols估計,得到的各項系數的普通t檢驗結果都是顯著的,其中趨勢項的系數為-0.00269,其t統計量是-2.79,在5%的置信水平下,可以顯著地拒絕時間趨勢項系數為零的零假設。結合前面的結果,可以確定中國股市中市場波動的成分序列沒有單位根,且模型3的顯著性表明該時間序列具有確定性趨勢。其趨勢項系數為-0.00269,表明隨時間變化,年度化的mkt[,t]數據具有減小的趨勢。
表3給出了個別波動時序數據的adf檢驗結果,根據前面提到的方法,確定滯後階數為5階。
表3 公司個別波動的adf檢驗
模型類型 滯後 ρ pr<ρ τ pr<τ f pr>f
無常數項和趨勢項 5 -24.9683 0.0002 -2.92 0.0038
有常數項 5 -64.0214 0.0011 -3.89 0.0029 7.55 0.0010
有常數項和趨勢項 5 -127.348 0.0001 -4.58 0.0017 10.53 0.0010
對於模型3,該模型的檢驗結果顯著拒絕了存在單位根的零假設,雖然模型整體是顯著的,但是時間趨勢項的t統計量為-2.32,不能拒絕時間趨勢項系數為零的零假設,說明時序數據不符合該模型。繼而檢驗模型2同樣拒絕了存在單位根的零假設,其常數項的t統計量為2.49,不能拒絕常數項系數為零的零假設。模型1仍然拒絕了存在單位根的零假設,最後確定該序列無單位根,但是不包含確定性趨勢。
經過上述的計量經濟學檢驗,證實了前面圖形分析的結論,即:中國股票的市場波動成分隨時間變化有減小的確定性趨勢,但是股票的個別因素波動成分沒有確定性趨勢。這說明,中國股市的總體波動中,市場因素造成的波動在不斷減少,而股票個別因素造成的波動沒有確定的變化趨勢。
3.波動趨勢的原因討論
經過計量經濟學研究,可以確認在樣本期內中國股票的市場波動成分有減小的確定性趨勢。下面將對這一現象作進一步分析,討論其可能的成因,但更明確的定論還有待進一步研究的證明。
首先,中國股票市場處於逐步成熟的過程中,隨其發展,市場的透明度也在不斷提高,使得不同投資者之間的信息不對稱狀況得到了改善,根據我們模擬信息不對稱下市場波動的結果,可以證明:信息不對稱的程度對市場波動性的影響是存在的,當市場中有嚴重的信息不對稱時,市場波動較大,當信息不對稱較緩和時,市場波動也降低。因此我國股市中的信息不對稱程度的降低是市場波動逐步減少的一個原因。
其次,中國股票市場目前還處於高速的成長期,在本文選用的樣本期內,這一成長趨勢更為明顯。其間市場中的股票數量有顯著增加,其結果是中國a股市場中股票收益的平均相關系數不斷下降,而且這一相關性下降自1993年起尤其明顯。單個股票收益間相關性的下降在一定程度上使得市場收益趨於相對穩定,因而造成中國股票的市場波動成分逐漸減小。
第三,中國股票市場的監管也在不斷加強,不斷有新的法規出台從政策角度完善中國股票市場。而且進一步的分析發現中國股票的市場波動成分與個別因素波動成分的比值在樣本期內不斷下降,且在市場波動成分在總體波動中也占相對小的比例,從一定程度上反映了市場的持續完善化。市場的完善也會促使市場收益的穩定,即市場波動成分呈變小趨勢。
同時,在中國股票市場中,機構投資者正在逐漸替代散戶成為市場投資的主要力量。機構投資力量的加強使得市場中的炒作成分變小,也減少了投機成分,因而有利於市場收益的穩定。這同樣也可能是市場波動成分下降的原因。還有數據顯示,樣本期內中國股票市場中的交易日益活躍,這雖然可能導致個別股票收益波動增加,但是對於市場整體來說,增加的交易量可能會減小市場收益的波動。
四、結論
本文採用的波動性度量,可以有效地對總體波動性進行分解,並方便地對不同波動成分作出估計。通過移動平均方法和確定性趨勢檢驗,得到了如下主要結論:首先,中國股票的市場波動隨時間變化有減小的確定性趨勢,從中可以看到中國股市在10多年的發展中確實在不斷進步,股票市場的投資環境在逐漸完善。其次,雖然從表面上看,中國股票市場的平均個別因素波動成分有下降趨勢,但經過計量經濟學方法的檢驗,證明這一趨勢不是確定性的,表明中國市場中的上市公司質量並沒有得到根本性的改良,企業治理仍有待提高。
同時本文對中國股票的市場波動減小的結論提出了一些可能的解釋,為後續研究提供了方向,可在此基礎上,進一步論證中國股票市場的不同波動成分變化趨勢的深層原因。
【參考文獻】
[1]宋逢明,江婕.中國股票市場波動特性的實證研究[j].金融研究,2003.(4).
[2]campbell,j.y.,and p.perron,1991,pitfalls and opportunities:what macroeconomists should know about unit roots[j].nber macroeconomics annual 6,141-201.
[3]campbell,j.y.,m.lettau,b.g.malkiel,and y.xu,2001,have indivial stocks become more volatile?an empirical exploration of idiosyncratic risk[j].the journal finance lvi 1,1-43.
[4]hamilton,j.d.,1994,time series analysis[m].princeton university press.
【原文出處】財經論叢
【原刊地名】杭州
【原刊期號】200404
【作者簡介】作者單位:清華大學經濟管理學院
Ⅵ 股票軟體主力散戶買入賣出統計量可信度高嗎
高 問題是你認為你看到主力買入大 你跟著就會賺錢嗎? 想想吧 如果這樣炒股會賺錢 主力就哭了 你看到的不是全部 只是一角
Ⅶ 如何查詢個股的每日漲幅情況~統計分析急用!
看看能不能幫到你的忙!http://quote.stockstar.com/stock/external_history.aspx?code=szag000589&BeginDate=2007/5/25
Ⅷ 如何查看所有A股所有 股票統計信息,主要是研究股票數據,進行數據統計分析,研究規律寫論文。
這個有專門的公司在做,但是大多數都是要收費的,如果你是在學校的話,你們學校的圖書館網站上應該購買了一下資源,裡面可能會有的,
Ⅸ 統計學方面的問題需要請教,股票成交數據統計
沒用 股票不是一加一等於二的問題 出現A情況會出現B結果 但出現B結果 未必是A情況 而且很多時候問題是出現A情況有6成機會出現B記過 有4成機會出現C結果 所以這些是概率問題 判斷不只能靠 成交單來判斷 這只是影響漲跌的其中一部分 如果只靠這個無疑是盲人摸象
Ⅹ 統計學在股票中的應用有那些方面
股票價格指數(以下有時簡稱股價指數)是我們統計學里指數中的一種。它反映一定時期內某一證券市場上股票價格的綜合變動方向和程度的動態相對數。由於政治經濟,市場及心理等各種因素的影響,每種股票的價格均處於不斷變動之中;而市場上每時每刻都有許多股票在進行交易。為了從眾多個別股票紛繁復雜的價格變動中判斷和把握整個股票市場的價格變動水平與變動趨勢,美國道.瓊斯公司的創始人之一查爾斯.亨利.道第一個提出了平均股票價格指數作為衡量尺度,這就是久負盛名的道.瓊斯平均股價指數。如今,世界各國的股價市場幾乎都編有股票價格指數,較有影響的除道.瓊斯指數以外,還有美國的標准.普爾股價指數(有時記為S&P500指數)、紐約證券交易所票價指數,英國的《金融時報》股價指數、日本的經濟新聞社道氏平均股價指數以及香港的恆生指數等。股價指數可以為投資者和分析家研究,判斷股市動態提供信息。它不僅反映股票市場行情變動的重要指標,而且是觀測經濟形勢和周期狀況參考指標,被視為股市行情的「指示器」和經濟景氣變化的「晴雨表」。在我國大陸,主要有上證指數和深證指數。
編制股票價格指數的意義在於
(1)綜合反映股票市場股票價格的變動方向和變動程度。(2)據此進行因素分析,分析各種股價對股票市場股價總水平的影響程度。(3)分析股價長期內的變動趨勢。(4)在宏觀上,股指可以預測國民經濟景氣情況和企業經營業績。
(一)股票價格指數的一般概念
1.股價平均數:它是用來反映多種股票價格變動的一般水平。股票價格平均數由證券交易所、金融服務公司、銀行或新聞機構編制的,用以反映證券市場股票價格行市變動的一種價格平均數。
由於股票市場上各上市公司股票價格變動的方向和幅度不可能一致,為了衡量由各種股票共同組成的大市整體價格水平和整個市場總體變動方向,一些組織開始編制了股票價格平均數。1981年6月,「道.瓊斯公司」的共同創立者之一——查爾斯.亨利.道在《客戶午後通訊》上首先發表了一組後來被稱為「道.瓊斯工業股股票價格平均數」,是世界上最早的股票價格平均數,一般計算步驟是:先選定一些有代表性的樣本公司,再通過簡單算術平均法,以這些公司股票收盤價之和除以樣本公司數得出。計算公式為:
P=(ΣPi)/N
其中,P代表股票價格平均數,N代表樣本公司個數,Pi代表第i家公司股票計算期的收盤價。
2.基期:指在編制股票價格指數時,被確定作為對比基礎的時期。這個時期可以是某一日,也可以是某一年或若干年。例如,義大利商業銀行股票價格指數基期是一年,即以某一年全年股票價格平均數作為對比的基礎;標准.普爾500種和400種工業股股價指數則以1941—1943年為基期。通常較多採用以某一日作為計算基期。由於股票價格指數是由現期水平同基期水平相比較得出,因此,基期的選擇對指數絕對數大小具有重要影響。影響股票價格指數絕對水平大小的另一個重要因素是基數。
3.基數:指股票價格指數在基期的數值。在大多數國家中,基數都定為100,也有定為10(如標准.普爾500種股票價格指數)、50(如紐約證券交易所綜合股價指數),還有的定為500(如澳大利亞證券交易所有普通股股價指數)、1000(如香港遠東指數,加拿大多倫多300種股票價格綜合指數)等。基數有大小,對股票價格指數絕對數大小有重要影響。
4.點:是股票價格指數的計算單位,在採用股票價格平均數和股票價格指數衡量股市行情變動的情況下,作為計算單位的「點」具有不同含義。在前一情況下,「點」代表的是平均水平的價格單位,是一個金額概念,同貨幣單位(如元)在類似的含義上運用,如平均價格指數為150點,即意味著市場上股票價格的平均水平為150元。在後一情況下,「點」反映的是計算期價格水平相對於基期價格水平變動的幅度,是指「百分點」(或「千分點」等)的意思,一般不能直接同金額概念等同起來,如基期指數定為100點,計算期指數為150點,即意味著計算期股票價格水平是基期水平的150%。但無論在任何場合,「點」總是衡量股票價格行情起落變動的尺度。由於世界各國的股票市場都編制有若干不同的股票價格指數,其選定的基期、確定的基數不同,尤其是計算方法的差異,針對不同股票市場的股票價格指數,與同一股票市場的不同股票價格指數,在絕對數上並沒有可比性。但是隨著資本主義經濟一體化趨勢的加強,各國不同股票價格指數變動趨勢在一定程度上具有了「聯運性」,這一點尤其是在1987年10月的世界股市崩潰時得到了印證。