導航:首頁 > 融資信託 > 大數聚融資

大數聚融資

發布時間:2022-12-30 19:54:40

1. 互聯網企業融資案例的融資模式有哪些

法律分析:互聯網企業融資案例的融資模式:1、第三方支付。2、P2P網路貸款平台。3、大數據金融。4、眾籌。5、信息化金融機構。6、互聯網金融門戶。

法律依據:《中華人民共和國民法典》

第七百三十五條 融資租賃合同是出租人根據承租人對出賣人、租賃物的選擇,向出賣人購買租賃物,提供給承租人使用,承租人支付租金的合同。

第七百三十六條 融資租賃合同的內容一般包括租賃物的名稱、數量、規格、技術性能、檢驗方法,租賃期限,租金構成及其支付期限和方式、幣種,租賃期限屆滿租賃物的歸屬等條款。

2. 大數據金融前景

一、大數據金融的含義
大數據金融指的是將巨量非結構化數據通過互聯網和雲計算等方式進行挖掘和處理後與傳統金融服務相結合的一種新的金融模式,它是一種相比於傳統金融更加透明、參與度更加廣泛、體驗更好、效率更高的新興金融模式。
廣義的大數據金融包括整個互聯網金融在內的所有需要依靠發掘和處理海量信息的線上金融服務。也就是說,我們所提到的不管是P2P還是眾籌等互聯網金融行為,其核心都是大數據金融,因為互聯網金融如果沒有大數據的支撐,就成了一個單純意義上的平台。而互聯網金融得以在互聯網誕生之日起,到今天人類社會進入「PB(1024TB)」時代,歷年來數據信息的記錄與積累,以及雲計算技術的不斷成熟,使得大數據金融在互聯網誕生數十年後終於可以一展風采。持續高增長的電子交易數量和網路零售服務,使得依賴於商務需求的金融體系能夠在線上尋求到數據支撐。

狹義上的大數據金融指的是依靠對商家和企業在網路上歷史數據的分析,對其進行線上資金融通和信用評估的行為。我們可以很直觀地看到,最初在互聯網平台上尋求到金融服務的商家和企業,一類是在互聯網平台上留下了一定數量的歷史信用信息的商家或企業,另一類是在相關產業之內積累了相當程度的歷史信用的商家或企業。而從未在線上或實際交易中產生過信息的全新商家和企業在沒有建立足夠的交易基礎之前是不太容易通過單純的信用方式進行這種融資的。無論是廣義還是狹義的定義,大數據金融的核心內容都是對商家和客戶的海量數據進行收集、儲存、發掘和整理歸納,使得互聯網金融機構能夠得到客戶的全方位信息,掌握客戶的消費習慣並准確預測客戶行為。這樣的做法不管是作為評級認定標准,還是作為目標客戶進行營銷宣傳的理由,都能夠使互聯網金融機構對自己的風險進行控制,對自己的發展策略進行更詳盡的規劃。作為大數據的使用者,互聯網金融機構必須為數據的採集和使用付出成本,如果不是同時作為數據的收集方,進行原始數據的採集和整理,那就要向數據來源的第三方支付使用費用。
二、大數據金融的發展機遇
1.互聯網企業自身轉型需要。隨著電商競爭愈演愈烈,最初的零售領域與支付領域的競爭已逐漸延伸到了整個供應鏈的其他環節,包括物流、倉儲,自然也包含了最重要的金融服務。盡快發展自身原有業務引申出來的大數據金融服務,有利於建立用戶黏性。積極地進行專業化、個性化定製金融服務對未來電商領域的全方位競爭有著十分重要的意義。
2.實體產業需要大數據金融的支持。大數據金融通過各種方式給市場帶來了活性,整個產業鏈的效率提升、資源配置優化是有目共睹的,虛擬經濟與實體產業的下一步發展,必定都離不開大數據金融的支持。打通上下游環節,使資金更有效率,無論是對電商的未來發展還是對傳統金融的突破都大有益處。
三、大數據金融面臨的挑戰
大數據使得互聯網金融得到空前的發展,同時也帶來了一系列的問題。原來的互聯網非金融機構從事類金融服務,給傳統的金融體系帶來了一定的沖擊,如何協調和處理好這兩者之間的關系,成了未來大數據金融發展至關重要的環節。未來,大數據金融的發展必將基於傳統金融行業與互聯網大數據技術的進一步融入和整合,這就要求金融服務與互聯網及大數據的關聯程度必須不斷加強。
1.必須推進金融服務與社交網路的進一步融合。使金融業的數據來源能夠脫離早期呆板滯後的提交、審批、盡職調查等來源方式。要使金融信息的獲取渠道能夠直接深入金融服務本身,就要利用互聯網、社交媒體等新的數據來源,從多渠道獲取實時客戶信息和市場信息,充分了解自標客戶的需求和資質情況,建立更高效的客戶關系與更完整的客戶視圖,並利用社交網路對忠實客戶和潛在客戶進行精準營銷和定製化金融服務的方案。

2.傳統金融機構要進行互聯網、大數據金融的轉型,必須要處理好與數據服務商的競爭、合作關系。目(下轉80頁)(上接76頁)前,線上互聯網企業由於占據極大的平台優勢,壟斷從交易發生到交易結算的各個環節以及這其中產生的各項數據信息,使傳統金融企業想要介入十分困難。要想在實際過程中重新組建自己的數據平台,從時間方面來看,已經處於劣勢。因此,傳統金融機構與數據服務商開展戰略合作是比較現實的選擇。
四、大數據金融的發展趨勢
大數據技術還遠未成熟,而大數據金融帶給我們的變化已足以讓人驚訝,大數據金融的未來也是一片光明。未來,隨著大數據技術的不斷成熟,大數據金融的發展也必將進一步改變人們的生活生產方式。
1.大數據金融跨界發展。由於互聯網技術的開放性,信息不對稱將顯著減少,金融在日後也許就不是少數傳統的金融從業者的專屬領域了。從供應鏈要求的技術來看,互聯網企業、軟體企業都紛紛加入大數據金融的開發中,大數據進入跨界發展的趨勢越來越明顯,金融業的競爭也將由於未來力量的沖擊變得更加激烈。這也可能導致將來金融業內部混業經營的進一步發展,銀行金融與非銀行金融的界限、證券公司與非證券公司之間的界限都可能變得非常模糊。

2.大數據金融服務多樣化。大數據金融從電商平台發展出來以後,不斷地整合發展傳統產業,從零售的日用百貨發展到電子產品,再到汽車,甚至是大宗商品交易,未來也會發展到房地產、醫療等方面,日常的金融服務也將不斷地擴展,綜合化、社會化、日常化。
3.大數據金融服務專業化。隨著涉足領域越來越廣泛,大數據金融必將產生專業化趨勢,產生更明確的產業鏈分工,根據不同的環節或者是不同的行業,其服務內容都將產生一系列的變化。同時隨著發展水平的提高,必定會有高要求的定製化服務、個性化服務要求,未來的大數據金融企業必將以客戶為中心,高度精準與定位客戶需求來制定專業的個性化服務。總而言之,大數據金融憑借高度數據化的管理和運作模式,在互聯網發展的今天有著不可替代的地位,將來大數據金融必將是金融業發展的中流砥柱,它將進一步滲透到各行各業的每一個角落,不斷地促進金融生態的發展。在不久的將來,每個人都將能夠切身體會到大數據金融帶來的變化,都能從大數據金融的發展中獲得益處。

3. 大數據管理會計對融資的作用

管理會計是企業高層解決經營管理難題的重要工具。
管理會計不僅是會計,還是管理的綜合體。在大數據時代,企業要想更好進行經營和發展,必須從更多途徑及時獲得更多、更准確的信息數據,從而挖掘出更有價值的材料。因此,企業管理會計必須依託於大數據的作用,針對大數據的特點,在收集、分析和整理數據的過程中,不斷完善技術積累經驗,只有這樣才能夠提升管理會計發展水平。
在未來社會,管理會計人才將成為企業財務中不可缺少的、不可被替代的人才。管理會計從傳統的會計系統中分離出來,著重為企業進行最優決策,改善經營管理,並著力提高企業經濟效益服務。其相關從業人員常參加重大戰略決策,把控企業投資風險,推動企業的可持續性發展。

4. 貸款大數據可以優化嗎大家可以這樣去做!

在日常的生活中,每一個人都有可能產生貸款需求,從而在貸款過程中產生貸款大數據。不過,有很多人常常因為自己的貸款大數據不佳,而被很多金融機構所拒貸。那麼,貸款大數據可以優化嗎?真實情況是怎麼樣的呢?我們大家一起來了解一下。

3、積累良好借貸記錄
貸款大數據優化的另一種方法,就是積累良好借貸記錄。大家可以根據自己的需要,保持一定的貸款頻率,並保持良好的借貸記錄。隨著良好借貸記錄的積累,大家的貸款大數據就會被逐漸優化。
總的來說,貸款大數據是可以優化的,大家可以有3種方法去選擇。不過,貸款大數據優化過程會比較長,需要大家有足夠的耐心。

5. 大數據環境下現代企業融資方式的選擇

大數據能夠幫助企業預測經濟形勢、把握市場態勢、了解消費需求、提高研發效率,不僅具有巨大的潛在商業價值,而且為企業提升競爭力提供了新思路。企業怎樣利用大數據在融資行為中發展。這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。
企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。
成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。
服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。
產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。
.

6. 大數據金融-第一章 大數據金融概論

1.大數據與小數據

2.大數據的內涵
(1) 數據類型方面

(2) 技術方法方面

(3) 分析應用方面

3.大數據的特徵

多樣性:隨著互聯網的發展和感測器種類的增多,諸如網頁、圖片、音頻、視頻、微博類的未加工的半結構化和非結構化數據越來越多,以數量激增、類型繁多的非結構化數據為主。非結構化數據相對於結構化數據而言更加復雜,數據存儲和處理的難度增大。

時效性:大數據的時效性是指在數據量特別大的情況下,能夠在一定的時間和范圍內得到及時處理,這是大數據區別於傳統數據挖掘最顯著的特徵。只有對大數據做到實時創建、實時存儲、實時處理和實時分析,才能及時有效的獲得高價值的信息。

價值型:包含很多深度的價值,大數據分析挖掘和利用將帶來巨大的商業價值。

4.大數據與傳統數據的區別

5.大數據的產生背景

1.按照大數據結構分類

2. 按照大數據獲取處理方式分類

3.按照其他方式分類

1.銷售機會增多

0. 商業大數據的來源

1. 客戶

2. 市場

3. 商品

4. 供應鏈

0. 數據來源

2. 市場與精準營銷

3. 客戶關系管理

4. 企業運營管理

5. 數據商業化

0. 數據來源

2. 付款定價

3. 研發

4. 新的商業模式

5. 公共健康

1. 營銷

2. 服務

3. 運營

4. 風控

大數據金融是指運用 大數據技術和大數據平台 開展 金融活動和金融服務 ,對金融行業 積累的大數據以及外部數據 進行雲計算等信息化處理,結合傳統金融,開展資金融通、創新金融服務。

1. 呈現方式網路化
大量的金融產品和服務通過網路呈現。

2. 風險管理有所調整
風險管理理念 ——財務分析(第一還款來源)、可抵押財產或其他保證(第二還款來源)重要性將有所降低。
風險定價方式 ——更注重將交易行為的真實性、信用的可信度通過數據來呈現。
對客戶的評價 ——全方位、立體的/活生生的。
風險管理的主要手段 ——基於數據挖掘對客戶進行識別和分類。

3. 信息不對稱降低
4. 金融業務效率提高
在合適的時間、合適的地點,把合適的產品以合適的方式提供給合適的消費者。

5. 金融企業服務邊界擴大
由於效率提升,其經營成本必然隨之下降,最適合擴大經營規模。
金融從業人員個體服務對象會更多。

6. 產品是可控的、可受的
通過網路化呈現的金融產品,對消費者而言,其收益或成本、產品的流動性是可以接受的,其風險是可控的。

7. 普惠金融
大數據金融的高效率性及擴展的服務邊界,使金融服務的對象和范圍也大大擴展,金融服務也更接地氣。

1. 放貸快捷,精準營銷個性化服務
立足長期大量的信用及資金流的大數據基礎之上,在任何時點都可以通過計算得出信用評分,並採用網上支付方式,實時根據貸款需要及其信用評分等數據進行放貸。

2. 客戶群體大,運營成本低
大數據金融是以大數據雲計算為基礎,以大數據自動計算為主,不需要大量人工,成本較低,整合了碎片化的需求和供給,服務領域拓展至更多的中小企業和中小客戶。

3. 科學決策,有效風控
根據交易借貸行為的違約率等相關指標估計信用評分,運用分布式計算做出風險評估模型,解決信用分配、風險評估、授權實施以及欺詐識別等問題,有效地降低了不良貸款率。

基於 電商平台基礎 上形成的網上交易信息與網上支付形成的金融大數據,利用雲計算等先進技術對數據進行處理分析而形成的信用或訂單融資模式。
典型代表有 阿里小貸 ,基於對電商平台的 交易數據、社交網路的用戶交易與交互信息和購物行為習慣 等的大數據通過 雲計算 來實時計算得分和分析處理,形成網路商戶在電商平台中的累積信用數據,通過電商所構建的網路信用評級體系和金融風險計算模型及風險控制體系,來實時向網路商戶發放訂單貸款或者信用貸款,例如,阿里小貸可實現數分鍾之內發放貸款。

企業利用自身所處的 產業鏈上下游 (原料商、製造商、分銷商、零售商),充分整合供應鏈資源和客戶資源,提供金融服務而形成的金融模式。

京東商城、蘇寧易購是供應鏈金融的典型代表。

在供應鏈金融模式當中, 電商平台只是作為信息中介提供大數據金融 ,並不承擔融資風險及防範風險等。—— 渠道商為核心企業。

7. 大數據金融是不是互聯網金融

大數據並不是單指互聯網金融。

大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方式對其數據進行專業化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。

大數據金融擴充了金融業的企業種類,不再是傳統金融獨大,並創新了金融產品和服務,擴大了客戶范圍,降低了企業成本。大數據金融按照平台運營模式,可分為平台金融和供應鏈金融兩大模式。兩種模式代表企業分別為阿里金融和京東金融。

拓展資料:

互聯網金融行業面臨大洗牌

在去杠桿的嚴監管的大背景下,近期信用風險事件頻頻爆發,根據網貸之家的數據顯示,自6月以來,P2P行業新增問題平台133家,其中95家發布了相關逾期或停業兌付公告。

違約事件頻發的主要原因1)隨著市面上資金收緊,一些資質較差的企業出現債務違約,影響到相關P2P平台2)一些產品不合規、風控能力較差的平台,高返利的平台受到資金收緊的影響資金鏈斷裂3)P2P平台頻繁暴雷,引發投資者恐慌性擠兌,一些運營良好的P2P平台受到波及導致兌付困難。

短期來看行業集中暴雷會導致行業承壓,另一方面隨著不良企業出清,風控良好、經營合規的頭部互金公司有望迎來快速發展,互聯網金融企業能夠服務一些傳統金融機構難以觸及的領域作為傳統金融機構有效補充,隨著百行徵信建立,徵信體系的逐漸完善,預計行業風控能力將顯著提升,重點關注行業頭部企業

8. 大數據分析與金融,有哪些結合點

大數據分析讓銀行更准確知道誰是自己的用戶,大數據分析讓證券市場更容易得到想要的信息,大數據分析也會放保險從業者更容易去找到客戶。

大數據分析與金融的結合,就是與銀行、證券、保險等行業的結合應用,現階段就是找到最需要有效幫助的人,同樣大數據分析能夠獲得對未來布局的信息,讓公司決策准確有效。

9. 互聯網融資方式有哪些

1、第三方支付:
第三支付已不僅僅局限於最初的互聯網支付,而是成為線上線下全面覆蓋,應用場景更為豐富的綜合支付工具。目前市場上第三方支付公司的運營模式可以歸為兩大類:一類是獨立第三方支付模式,是指第三方支付平台完全獨立於電子商務網站,不負有擔保功能,僅僅為用戶提供支付產品和支付系統解決方案,以快錢、易寶支付等為典型代表;另一類是以支付寶、財付通為首的依託於自有B2C、C2C電子商務網站提供擔保功能的第三方支付模式。目前第三銀行支付牌照已經發放了250多個,其中真正從事互聯網支付的企業有97家,另有150多家預付卡公司。互聯網支付企業的支付總量約達6萬億元,佔到整個支付總量的0.5%。
2、P2P信貸:
從P2P的特點來看,其在一定程度上降低了市場信息不對稱程度,對利率市場化將起到一定的推動作用。例如人人貸等公司,其實就是N個人組成的俱樂部,利用信息的不對稱,在俱樂部成員之間互相借貸。P2P信貸的核心就是,利用互聯網幾億人之間的信息不對稱,讓他們相互借貸,把信息的不對稱減到無窮小。
3、大數據金融:
大數據金融通過分析和挖掘客戶的交易和消費信息掌握客戶的消費習慣,並准確預測客戶行為,使金融機構和金融服務平台在營銷和風控方面有的放矢。大數據金融以電商平台開展的互聯網金融為典型,運營模式可以分為以阿里小額信貸為代表的平台模式和京東、蘇寧為代表的供應鏈金融模式。阿里小額信貸通過分析淘寶網上的大量信息,利用支付寶,給每個人發貸款。這種做法和銀行的做法完全不同,是一種自動放貸機制。淘寶商戶所有的行為構成了本身風險的定價,然後阿里小貸根據風險定價,給它授信額度,可以隨時貸款、隨時還息。最終形成一個動態的風險定價過程。此種模式除了電商平台對產業鏈的上、下游提供融資服務外,商業銀行通過線上供應鏈金融也參與大此模式中,為將來商業銀行和電商平台進行客戶搶奪的主戰場。
4、眾籌融資:
在美國,一個人如果有一個好想法,他就可以把這個想法放到網上,讓大家給投資,然後用這個產品還款。投資者在網上投資可以獲得股權。現在世界上只有美國正式通過法律規定,小企業可以通過這種方式獲得股權融資。目前國內對公開募資的規定及特別容易踩到非法集資的紅線使得眾籌的股權制在國內發展緩慢,很難在國內難以做大做強,短期內對金融業和企業融資的影響非常有限。
5、余額寶模式:
其實互聯網賣金融產品沒有什麼特殊性,但是余額寶把貨幣市場基金具有的貨幣功能和網路支付結合在一起,突破了時間和空間的界限,這是一般的物理網點做不到的。如何將傳統金融產品和互聯網企業進行結合,進行顛覆性的創新,通過互聯網的特性改善線上金融產品的用戶體驗。余額寶將用戶網路支付和貨幣基金的特性很好的進行融合。互聯網企業抑或是傳統金融機構誰能在此改善用戶體驗,將最後贏得用戶。
6、互聯網金融商城:
是指利用互聯網進行金融產品的銷售以及為金融產品銷售提供第三方服務的平台。它的核心就是「搜索+比價」的模式,採用金融產品垂直比價的方式,將各家金融機構的產品放在平台上,用戶通過對比挑選合適的金融產品。互聯網金融商城多元化創新發展,形成了提供高端理財投資服務和理財產品的第三方理財機構,提供保險產品咨詢、比價、購買服務的保險門戶網站等。這種模式不存在太多政策風險,因為其平台既不負責金融產品的實際銷售,也不承擔任何不良的風險,同時資金也完全不通過中間平台。

閱讀全文

與大數聚融資相關的資料

熱點內容
騰訊理財通買基金行嗎 瀏覽:196
9月份加拿大匯率 瀏覽:140
京東理財節假日沒有收益 瀏覽:705
為什麼淘寶傭金付款後只有一半 瀏覽:468
鄧暉長江證券履歷 瀏覽:388
亨斯邁上市公司 瀏覽:784
非上市公司的好處 瀏覽:507
汽車金融公司不見了 瀏覽:493
拉融資寄郵件的主題 瀏覽:824
馬路科技顧問股份有限公司 瀏覽:814
柳州柳鋼集團是上市公司嗎 瀏覽:602
免息車貸款 瀏覽:790
和基金類似的理財產品有哪些 瀏覽:981
江蘇沙鋼集團最新情況 瀏覽:269
武漢比較大的金融貸款公司 瀏覽:227
通源環境節能股份有限公司怎麼樣 瀏覽:465
曲阜宏圖理財公司 瀏覽:674
花旗銀行匯豐銀行理財產品 瀏覽:211
代持股份的傭金 瀏覽:141
旺鏈科技股票 瀏覽:276