导航:首页 > 投资金融 > 金融机构savp

金融机构savp

发布时间:2021-08-30 18:15:55

Ⅰ C语言编译关于数组出现错误 帮我看看吧 谢谢

limit = findp[curnum,savp];应该是limit = findp(curnum,savp);
你把小括号写成了方括号

Ⅱ 麻烦谁给我介绍一下金融数学,金融工程,精算学!

完全对数学丧失兴趣了的话一定不要读金融工程。金融工程基本上就是用微分方程随机分析等等数学东西和程序语言做金融模型的。
精算师总是需要和许多数据打交道,我在精算部实习的时候动辄面对百万数量级的数据,从数据库里提一次数据就得几天。。枯不枯燥看你个人感觉了
对数学的要求来看,低层次的金融工程比精算要求高一些吧,毕竟底层的精算会点概率论就行了。高层次的对数学要求都很高。
发展前景,从工作内容上说,国内其实正经的工作比较少,也就一些外企能有些真正意义上的和外国类似的工作,毕竟中国现阶段大多数公司各种东西决定权并不在这种技术性的人的手中。从待遇上来说,国内的分化比较大,同是精算师,刚入行的和主管、总精算师的薪水差的不是一星半点。国外总体比较稳健。
国内外的就业缺口上,中国的这类技术性人才相对外国现有比例很小,但本身中国公司目前也不需要那么多的这类技术人员。所以高水平的到处抢,低水平的没处要。
两者对比来看,做quant的起薪会比精算高许多的,但精算是一个能干一辈子越老越吃香的工作,如何选择看你个人了。
本科阶段的课程的话,一定要把数学基础打牢就是了。做金融工程的往往是数学、物理背景出身的,就是这个道理。
学校的话,若是真想念金融工程,以后找机会去顶级的地方的话国内学校不要考虑了。在国外找一个好一点的学校念吧。但其实我接触到的很多招quantative associate的都要求数学、金融数学、物理或计算机的博士以上学历而不要求金融工程的master。。任重而道远啊。

祝好运

Ⅲ 相敬如宾五笔怎么打

中文名
相敬如宾
读 音
xiāng jìng rú bīn
同义词
举案齐眉、琴瑟之好
反义词
琴瑟不调、分钗破镜

Ⅳ 谁有金融数据挖掘,关联规则分析与挖掘的一些介绍啊

接分啦。。。找到一篇不错的文章
楼主看下,参考资料:http://blog.csdn.net/ctu_85/archive/2008/09/16/2937486.aspx
2.关联规则挖掘过程、分类及其相关算法
2.1关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequent Itemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
2.2关联规则的分类
按照不同情况,关联规则可以进行分类如下:
1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然

阅读全文

与金融机构savp相关的资料

热点内容
天津瑞茂通融资租赁有限公司 浏览:452
恐怖融资界定始终遵循的原则是什么 浏览:50
硫醇甲基锡的价格 浏览:369
宏源期货乌鲁木齐营业厅客服电话 浏览:519
晋中银鑫融资担保有限公司 浏览:572
工行法人理财产品最新 浏览:155
股票市场 浏览:879
股东查账如何发现问题 浏览:236
融资融券打新举例 浏览:900
2019公司境外汇款的规定 浏览:616
600664股票价格 浏览:679
美国贷款银行有哪些 浏览:841
期货原油外汇通 浏览:684
民营银行的理财产品有本金保障吗 浏览:324
sps财务指标 浏览:641
期货投资公司挂靠 浏览:109
期货白银盈亏怎么计算 浏览:105
瑞达期货关联上市公司 浏览:530
期货老师公开课件 浏览:485
依赖科技股票 浏览:71