㈠ 大数据在金融领域有何应用
你好!大数据在当今社会任何一个领域都有很大用处,比如金融领域,这样可以通过大数据帮助投资者投资
㈡ 大数据技术在金融行业有哪些应用前景
大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到10年,金融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。
㈢ 大数据在金融领域中有哪些应用
大数据在金融领域中有哪些应用?应用很广,定价、授信、风控领域尤其多,我这边主要用到的分析软件是单位的帆软FineBI系统,应用案例随便说两个:
车险。其实根据车主的日常行车路线、里程、行车习惯、出险记录、职业、年龄、性别,可以给出非常不同的定价。比如一个开中级车,每天固定路线往返几公里通勤的熟练女白领车主,和一个开同样车型每天在珠三角或者长三角跑生意的中年暴躁小老板车主,假设后者出险概率是前者的3倍,那么完全可以定3倍于前者的价格(商业部分)。对于保险公司,前者才是优质客户,后者做了生意也是赔钱货,不如赶到竞争对手那里去。
贷款。现在各种小额贷款、消费贷款、供应链金融,都是在吃4大行懒得吃的散客市场,之所以他们懒得吃,就是怕麻烦。最麻烦的就是授信环节,对于一个没有固定资产等担保物的客户,能授信多少额度是个问题。淘宝能做小微是因为商家的流水在他们手里,白领的消费贷敢做是因为有稳定的现金流收入。但除了淘宝可以做到比较准确的模型,其他的业务都非常的粗放,基本每个领域都是根据几条死规则来做业务。这意味着这个市场还有很大的潜力可以挖掘,比如一个小老板,其实风险不大,他需要100w周转,但你没把握估算他的风险,只敢贷50w出去,就少赚了那50w的利息。
㈣ 大数据在金融行业的应用与挑战
大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。
㈤ 大数据在金融科技领域有哪些运用
我觉得大数据在金融科技方面的运用蛮多的,在大数据时代进行抽样分析就像在汽车时代骑马一样,一切都在改变。我们得到的数据再也不是随机的抽样,而是所有的数据。“样本=总体”。大数据的核心:预测。 它是把数学算法运用到海量的数据上来预测事情发生的可能性。例如,名为Farecast的公司,找到了一个行业机票的预定数据库,系统预测的结果是根据美国商业航空产业中,每一条航线上每一架飞机内的每一个座位一年内的综合票价记录而得出的。通过预测机票价格的走势以及增降幅度,Farecast票价预测工具能帮助消费者抓住最佳购买时机。到2012年为止,Faecast系统用了将近十万亿条价格记录来帮助预测美国国内航班的票价,Farecast票价预测的准确度已经高达75%,使用Fcat票价预测工具购买机票的旅客,平均每张机票可节省50美元。
㈥ 调研显示中国大数据应用与全球仍有差距
调研显示中国大数据应用与全球仍有差距
BM发布了全新《分析:速度的优势》白皮书,该白皮书基于IBM对60全球多个国家中超过1000位业务和IT高管的深度调研,对当前大数据[注]在中国及全球企业应用的现状进行了全面分析。该白皮书指出目前影响快速发展的数字市场的四个重大变化趋势,并基于企业的数据分析能力将他们分为领跑者、慢跑者、参与者和旁观者四个组别。同时,白皮书就企业在分析生命周期的三个关键阶段提出了快速将数据转变为洞察并驱动行动的建议,帮助企业在竞争中保持领先优势。作为全球发展最快的大数据市场,在此次调研中,虽然超过四分之三的大中华区企业在一年内实现了大数据的投资回报,显示了高于全球的投资信心,但是更多的中国企业更注重利用大数据分析来赢得新客户而不是创造更好的客户体验,同时,中国企业普遍在利用大数据推动数字和流程整合转型方面落后于全球整体水平。
IBM 大中华区全球企业咨询服务部高级合伙人兼副总裁Steven Davidson 表示:“随着大数据应用的不断深入,新的发展与变化已经产生。通过此次《分析:速度的优势》白皮书的发布,我们可以看到,速度优势对企业在竞争取胜至关重要。一部分企业正通过速度驱动的数据和分析实现差异化发展,对业务绩效和竞争地位产生了显著的影响。这一趋势对于全球企业高管,尤其是那些致力于利用创新技术推动自身发展的中国企业的领导尤为重要。IBM一直致力于与中国企业紧密合作,分享自身丰富的大数据分析洞察与资源,共同携手推动业务的创新与增长。”
四大变化引领全球大数据应用发展
作为IBM第六次全球数据分析调研,此次调研对象包括60多个国家中超过1,000位业务和IT高管,其中也包括大中华区企业。IBM 2014年全球分析调研揭示了影响快速发展的数字市场的四个重大变化:
变化1:绝大多数企业目前在一年内实现了大数据投资的回报。
变化2:以客户为中心仍是分析活动的主要目的,但企业越来越多地将注意力集中于利用大数据应对运营挑战。
变化3:通过将数字化能力集成到业务流程中实现企业转型。
变化4:大数据的价值推动力从数量转变为速度。
领跑者数据分析驱动实践,速度成关键
该白皮书指出要跟上当前的发展速度,企业需要全面地采用分析技术。基于企业现阶段分析能力,白皮书将企业分为四个组别:领跑者、慢跑者、参与者和旁观者。占10%的领跑者最有能力满足速度需求,并创造了巨大的商业价值。超过一半的领跑者都表示分析对业务表现和收入产生了显著影响并且使他们获得了显著的竞争优势。但大中华区在分析对业务、收入和竞争力方面产生影响的表现仍与全球领跑者存在着较大差距。为了创造业务价值,中国企业需要仿效领跑者,并且加快速度管理数据和分析,并依据数据洞察采取行动。
通过大数据分析构建速度驱动型企业
此次研究还表明,将原始数据的数量和多样性转变为洞察驱动的行动的速度是企业从数据和分析中创造价值的关键。支持这一速度的力量是使用大数据技术。在企业内加快分析速度不能一蹴而就,企业必须在分析生命周期的每个关键阶段保持领先:获取、分析和行动。
在获取阶段,快速获取和整合数据的能力对于创造速度优势非常关键。企业在寻找和管理数据时必须能够保证数据使用方式和时间的灵活性和敏捷性。企业需要推出支持数据多样化的解决方案,让数据为企业提供动力。
在分析阶段,追求行动速度的企业需要集中精力分析数据,并确定最有可能对业务产生积极影响的洞察。
在行动阶段,企业提高当前所需的快速行动能力的最后一步是真正地采取行动,并且快速处理数据。企业需要通过数字与流程的整合提升端到端的速度,使分析数据可供员工和高管使用,从而做到洞察交付和洞察需求相互匹配。
IBM推动中国企业大数据应用的快速发展
作为全球大数据技术与应用的领导者之一,IBM一直努力与广大中国企业、组织保持紧密的合作关系,并通过自身丰富的全球实践帮助众多企业成功应用大数据分析技术,实现了业务的创新与发展。
在汽车工业领域,IBM帮助上汽集团成功打造中国汽车市场首个O2O[注]电子商务平台——车享网。该平台将基于线上客户数据,有效判断客户潜在需求(+微信关注网络世界),提高运营分析效率,为客户提供及时的、个性化的服务与信息。通过全面的客户洞察做到精细化营销,车享网平台将大幅提升会员管理水平。通过数据分析提升汽车消费者全生命周期服务能力,真正做到高品质的客户体验。
在金融领域,去年,IBM帮助中国银行天津分行打造智能化网点,通过整合中国银行的后台数据分析平台,利用大数据分析技术,分析用户的业务偏好,为验证销售具体产品市场策略的有效性能提供重要的数据依据。
在快消领域,IBM与蒙牛集团于去年底达成战略合作。借助IBM强大的社交大数据分析与商务智能等解决方案,蒙牛将构建有效的大数据分析能力,发现新的客户洞察,并以此作为企业决策与业务流程优化的依据。
在零售领域,今年初IBM在帮助国内休闲食品领先企业良品铺子打造全渠道信息化应用平台的过程中,通过大数据分析,帮助企业将顾客有效地分群,从而实现精准营销和差异化服务。
在新互联网时代下,随着大数据、云计算[注]、社交及移动趋势的快速崛起,IBM正在构建自身全新的服务能力。在大数据应用领域,IBM一直引领着创新和发展,并不断融合自身在各行业与全球化发展中的经验,不断帮助中国客户紧抓新时代下的发展机遇,以稳健的步伐成长为全球企业的领导者。
以上是小编为大家分享的关于调研显示中国大数据应用与全球仍有差距的相关内容,更多信息可以关注环球青藤分享更多干货
㈦ 大数据思维在金融学研究中的作用
大数据思维在金融学研究中的作用
如今,计算机信息技术的迅速发展迎来了大数据时代,大数据时代极大程度的改变了现有的市场环境,给许多经济主体活动既提供了发展机遇,又带来了些许挑战。现阶段,金融研究与大数据思维息息相关,在大数据的时代背景下,对于金融研究来说,应当积极抓住机遇,迎接挑战,金融研究人员可以利用大数据思维来为各项研究工作提供帮助,通过分析大数据的一些良好特征,优化相关技术,调整金融研究模式。
一、大数据与大数据思维概述
(一)大数据与大数据思维
数据量大、数据真实性高、高度运行是大数据的几大特征,这些也是大数据得以发展的基础,同时计算机信息技术的迅速发展,又为大数据的发展提供了技术支持。大数据的实现必须要依赖于新型数据的处理,只有这样,大数据的真实性才能得到提高,大数据是海量且高速增长的一种综合性信息资产[1]。大数据思维是大数据时代下的产物,在摆脱传统的思维模式的基础上,利用大数据思维分析问题,只有这样,决策才能更加科学合理。
(二)大数据的发展趋势
大数据的发展趋势的具体表现为:首先,随着计算机信息技术的不断发展,数据的种类与来源越来越多,这样一来就为大数据时代的发展增添了助力,如今,数据库已经渗透到了人们的生活与工作之中,它几乎囊括了人们生活与工作中的所有数据信息,这些数据信息给人们的生活与工作提供了极大的便利;其次,超级计算机的诞生为大数据时代的发展提供了设备支撑,数据的存储与分析更加迅速,开放式的数据平台分析能力为数据的工业运行提供了保障;再次,大数据时代下,数据的种类与数量均是非常丰富,为了能够尽量的给人们提供有用的信息,数据分析就显得越来越重要;最后,大数据时代下,数据库的发展势头强劲,但是由于数据库仍旧处于刚刚兴起阶段,国家在这方面的法律与法规体系并不健全,在这一背景下,很多大数据的建设开始受到政府部门的高度关注,国际层面的大数据建设计划也在不断推出[2]。
二、金融学研究中运用大数据思维的价值
大数据思维的价值在在金融学研究中的运用主要表现在两个方面,其一,大数据思维能够决定金融行业的兴衰,这并不是危言耸听,主要是因为金融分析不可能脱离数据而独立存在,数据获取量与主动权利直接挂钩,并有着正相关的关系,阿里巴巴和京东等能够在大数据的环境下发展自身的金融业务证实了该点;其二,大数据时代的来临给金融行业既带来了机遇,又带来了挑战,一方面大数据时代下金融行业的市场竞争越来越激烈,金融企业只有依赖于大数据的思维模式,优化对客户的服务,才能在激烈的市场竞争中占据优势地位,另一方面,大数据时代使得金融企业在市场的开拓上不再遥不可及,而是近在咫尺。
三、大数据思维在金融学研究中的具体运用
(一)完善数据平台建设
顾名思义,大数据的主要内容即是数据,为了大数据时代的良好发展,完善数据平台建设就显得非常有必要。完善数据平台首先要拓展数据来源,传统的金融数据来源主要为银行,而在网络得到普及后,网上银行、门户网站和很多的手机APP等类型的互联网产品都是不同数据的主要来源[3]。完善数据的平台建设的主要目的是为客户提供更加优质的服务,在完善数据平台的建设过程中,要特别注意应用大数据思维进行思考,从而完成数据的获取、存储以及分析,只有这样,才能有效避免传统数据的诸多不足,例如,数据丰富性和全面性缺失,也能够在极大限度上提升数据平台建设的科学性和合理性[4]。
(二)运用大数据思维提高风险管控能力
众所周知,所有金融产品在经营上均存在一定的风险,这种风险一旦危害到金融产品的经营,将会给金融企业造成很大损失,金融企业要想给自身的长远性发展提供保障,在大数据的时代背景下,运用大数据思维提高风险管控能力就显得非常有必要。研究表明,金融企业在产品的经营过程中,运用大数据思维,能够极大的提高决策的精准性,降低经营风险。比如,一些中小企业向银行寻求借贷时,银行可以利用大数据思维对这些企业的销售额、资金量和社会认可程度做出分析,从而决定是否放贷以及放贷的多少,这样银行在盈利的同时,也最大程度的降低了经营风险。与大数据思维相比,传统的数据统计形式有许多不足之处,在风险管控能力上更是不可同日而语,因此,金融企业无论出于何种考虑,在经营过程中,均需要运用大数据思维。
(三)促进互联网金融的发展
互联网金融是金融行业一种新兴产物,互联网金融的发展不仅离不开网络技术的支持,也离不开大数据的时代背景。互联网金融集数据行业与金融行业二者之长,在大数据的时代背景与网络技术的支持下,不断创新生产经营方式,发展势头良好。互联网金融始终建立在大数据的基础之上,大数据的金融模式是互联网金融得以高速发展的重要因素。
(四)大数据扩展了现代金融学的研究范围
现代金融学的研究几乎已经不能离开大数据思维,研究人员在获取样本信息时,通过实证分析与数据分析,在一定程度上能够一改传统分析模式的缺陷,拓展了对金融学的研究范围。大数据的分析方式通过开辟更多的研究思路拓展现代金融学的研究范围,主要表现在两个方面:其一,大量数据的支撑使得数据分析的准确性得到提升,取样数据的偶然性与随机性得到降低或是予以避免,这样数据分析结果的可信度与说服力大大提高;其二,大数据不仅数据数量多,而且数据种类丰富,利用数据库内部的数据进行金融学的研究,自然而然的扩大了研究范围,现阶段的数据库不仅拥有结构化数据,还拥有非结构化数据,这就使得金融企业特别关注图片信息以及视频信息。
四、金融界学习大数据思维的方式
大数据思维对于金融行业的发展具有独到的作用,但是不得不注意的是,金融界在对大数据思维的学习与应用存在许多不足之处,金融行业要想有长远性发展,必须要深入学习大数据的思维方式,具体可以从以下几个方面着手:首先,金融企业可以特别成立大数据研究部门,设立相关岗位,根据企业的发展现状进行大数据思维的学习研究。一些大中型金融企业成立了数据研究部门,主要负责信息数据的收集,分析数据信息,设立起参考的具体方案,利用互联网和电视媒体等形式做好数据的收集;其次,考虑到现阶段大数据处于刚刚起步阶段,虽说门槛较低,但由于资金的滞后,一些金融企业即使建立了自身的大数据研究部门,却缺乏硬件上的支持,使得大数据的研究受到严重阻碍,因此,对于一些中小型金融企业来说,大数据的研究并不一定完全需要自己着手进行,可以与专门从事大数据研究的机构取得联系,相互合作,共同进行大数据的研究;最后,金融企业对于大数据思维的学习要深入到日常工作中,在日常的金融研究中,要积极运用大数据的思维方式,必要时,可以借助相关培训,使得金融研究人员在对大数据思维的应用上养成一种良好的习惯。
五、在金融研究中运用大数据思维的方式
(一)挖掘自身以及相关领域
大数据金融研究的主要内容就是对数据的处理分析,实际研究过程中,运用大数据思维挖掘自身以及相关领域的数据,这样能够有效提高工作效率。通过这种应用大数据思维进行挖掘的形式,能够给我国的金融研究人员提供更加丰富的思想类型与依据,这样能够开发出更多种类型的适合客户需求的个性化服务,提高我国金融企业的市场竞争力。另外,挖掘自身以及相关领域的大数据,能够给金融企业自身提供参考,这样可以使得金融企业认清自身发展上存在的不足,预防一些安全隐患,促进自身的发展。
(二)参与大数据交易或者互换资源
在大数据时代之下,数据种类复杂,数量巨大,可以肯定的说,没有任何一个企业可以掌握所有的所有数据信息,企业要想获得更多的数据信息,进行大数据的交易或者互换资源是一种非常方便、高效的方式,这种方式也必然会成为大数据未来发展的重要走向。对于金融企业来说,在激烈的市场竞争环境下,任何一个企业不可能脱离其它企业而独立存在,因此,合作共赢就显得非常重要,各金融企业通过参与大数据交易或者互换资源,可以得到更多对自身发展有用的信息,在这一情况下,大数据交易中心平台应运而生,它可以有效的搜集到企业发展所需的数据信息,促进金融企业之间的协同合作。
(三)使用大数据为自身发展服务
对于任何一个企业来说,使用大数据均是为自身发展服务。金融企业可以根据自身的发展现状,利用大数据传达的信息,及时发现自身发展中存在的问题并予以规避,完善生产经营模式,降低发展风险,促进自身的长远性发展。
六、结语
综上所述,大数据时代是未来社会发展的重要走向,金融学的研究离不开大数据思维,金融企业只有足够重视大数据的思维方式,将其运用到具体事项中,实现大数据的价值,提升对客户的服务水平,金融企业才能在激烈的市场竞争中游刃有余的发展下去。
㈧ 大数据在金融业的应用可以发挥哪些作用
有了大数据,自然就要有大数据技术,即从各种各样类型的巨量数据中,快速获取有价值信息的技术,强调快,这是大数据技术与传统数据挖掘技术的重要区别。
从巨量数据中提取的有价值信息,即是大数据在各个领域的具体运用,比如基于大数据进行客群的细分,进而提供定制化服务;基于大数据模拟现实环境,进而进行精准评估和预测;基于大数据进行产品和模式创新,降低业务成本、提升经营效率等等。
㈨ 如何用大数据分析金融数据
有大数据分析工具的,免费的,你找一下大数据魔镜。
㈩ 大数据技术在金融行业中的典型应用
大数据技术在金融行业中的典型应用
近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。
大数据在金融行业的典型应用场景
大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。第一,数据体量大(Volume),海量性也许是与大数据最相关的特征。第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。
金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性,让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。
当前,大数据在金融行业典型的应用场景有以下几个方面:
在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。
在证券行业的应用主要表现为:一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度,帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。
在互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。
金融大数据的典型案例分析
为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。
该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。
系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。
网络的搜索技术正在全面注入网络金融。网络金融使用的梯度增强决策树算法可以分析大数据高维特点,在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。网络“磐石”系统基于每日100亿次搜索行为,通过200多个维度为8.6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为网络内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500家社会金融机构,帮助其提升了整体风险防控水平。
金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。
二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。
三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。
四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。
以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。