导航:首页 > 投资金融 > 金融公司查大数据怎么做

金融公司查大数据怎么做

发布时间:2022-01-25 15:19:40

⑴ 大数据时代怎么做好金融行业的指标管理

银行的指标一向很多,比如监管指标、负债指标、效益指标、规模指标等,这些指标都是反应银行的经营生产状态,这些指标如果对应不同的业务部门,不同的业务人员,指标的变更、指标应用其实是很麻烦的事情,走流程就要排队等很久,再要技术人员去调整,然后再根据业务人员的需求,去做指标的应用展示,这个过程的流转完成,估计新的好几轮的需求已经又开始了,周而复始,指标一直不能发挥其最大的应用价值。所以需要一款既能做指标的集中管理,又能够快速相应指标分析的需求的工具,这里倾力推荐亿信华辰的指标管理平台(EsPowerIndex),亿信华辰深耕BI领域十多年,在银行领域的经验也很丰富,在指标建设这块,也比较有经验。这款工具能对指标集中进行管理,指标体系可视化,用户可直观看到指标一览表及每个指标的统计方法,数据来源,统计口径等信息,业务人员也能够自行维护指标体系,对于体系内的指标变更等,及时响应。同时,指标管理平台中用户可自主建模,全程可视化界面,引导式操作,同时内置敏捷分析平台,利用敏捷分析平台强大的自助分析功能,用户能从各个维度,各种可视化方式自由查看自己关心的数据,充分发挥指标体系的最大价值。

⑵ 怎样能查个人网络金融大数据

你好,可以通过下面方式来查询个人网络金融数据

一般来说,只要查询一下央行征信和网贷数据报告就可以清楚知道自己的各种征信数据信息

一、央行的征信查询,需要自己带上本人身份证件,去当地营业网点自助查询机查询,当场出具个人信用报告。

二、查询网贷数据就相对简单了解比如徽,信上的云台速查就可以快速获取报告,能够查看到用户的申请次数,网贷数据,网黑指数分,命中风险提示,法院起诉信息,仲裁案件信息,失信人信息等数据。还能知道网贷逾期详情,包括逾期天数、逾期金问额以及逾期平台等。报告内容非常详细具体,可以给你提供一个全面的信息报告,这样根据报告合理的处理自己的各项数据,对自身有很大的帮助。

希望能够帮到你!

⑶ 金融行业如何“把握”大数据

在企业信息化建设及互联网行业的发展过程中,数据量的增长已经达到了前所未有的速度。厂商、分析师以及技术专家认为“大数据”(Big Data)时代已经到来,针对大数据的相关技术已经被IT部门提上了议事日程。除了如何存储管理大数据,更为重要的问题是如何利用大数据为企业服务,通过商业智能以及高级分析应用将其价值发挥到最大。 新概念是新技术的催化剂,在大数据领域中,一些新技术包括Hadoop、MapRece都得到了更广泛的应用,Hadoop、MapRece为通用计算与分布式架构架起了一座桥梁,而传统的企业数据仓库技术则遭遇了前所未有的挑战。 数据大集中目前“数据大集中”的发展趋势已在中国金融业获得了广泛的认同,一些大型的证券商和银行已纷纷走上了这条道路。作为数据及业务应用的核心, 数据中心对于用户的重要性就相当于心脏之于人体。目前,越来越多的金融企业已经投入到对资料中心的建设。事实上,对于众多用户而言,确保每周24小时持续运行已经不再是对资料中心的惟一要求了,先进的资料中心解决方案还应在灵活性、可扩展性、安全性、冗余备份、环境控制以及业务延续性管理等方面有着更为出色的表现,而这一出色表现必须建立在“灵活、健康、高性能的综合布线系统”的基础之上。 不同于其他的行业的是,金融行业已经将网络系统作为其生产机器而并非是一般的办公室运作工具,网络的畅通与可靠运行已经成为金融业正常运转的首要条件。日益复杂的应用系统、海量的数据交换以及不断的更新使得数据中心在其网络系统中占据及其重要的位置。安全:金融业永恒的话题信息安全是金融行业永远的话题。如何利用信息技术的优势加强金融机构的内部控制,提高金融监管和服务水平,防范和化解金融风险,促进金融改革和创新,从而推动我国经济社会的发展,是当前我国金融业信息化建设面临的重大问题。金融信息系统外应用系统相互牵连、使用对象多样化、安全风险的多方位、信息可靠性、保密性要求高等特征构成了金融系统的突出特点。 国际金融危机以来,金融系统的风险控制和监管被提到了前所未有的高度。 史立谈道:“金融行业对网络的安全性、稳定性要求很高,系统要能够高速处理数据,还可以提供冗余备份和容错功能,保证系统在任何情况下都能够正常运行,否则就会给用户带来巨大的损失,同时系统需要提供非常好的管理能力和灵活性,以应对复杂的应用。” 当然,大数据在金融行业一切都还处于初级阶段,但是,金融企业每天处理的数据规模依然在保持增长,大数据分析使得商务决策越来越接近原生数据,信息的质量也变得愈加重要。如果同样复杂的分析可以运用到相关安全数据上面,那么大数据甚至可以用来改善信息安全。 大数据应该说是具有相当大的价值,但同时它又存在巨大的安全隐患,金融行业是不能容忍任何安全问题,一旦出现问题,必然会对企业和个人造成巨大的损失。也许当大数据真的能够解决安全以及稳定性的问题时,大数据才能真正融入金融行业当中。

⑷ 金融行业大数据是怎么做的

如‍中投在线‍网站很多基于大数据处理的,该网站的理财‍产‍品‍实在太多了,都是用大数据‍来‍做‍批‍处理的。

⑸ 金融行业大数据怎么玩

该怎么走还是的怎么走,用最新的技术去分析数据,得出结果,对症下药。柠檬学院大数据。

⑹ 大数据金融分析怎么做

你这个问题太宽泛了,要根据具体的业务需求,比如流失预测,就要用大数据的逻辑回归的模型去计算每个客户的流失概率等

⑺ 优秀的互联网金融公司,是怎么玩大数据风控的

这方面淘宝是最的最棒的,其次是腾讯做的野蛮好的,之后是网络以及360在紧跟其后!
说白了是你生活中只要跟消费相关的信息都收集分析,之后会有一个风险比对。、
这个就算我们知道了也做不到,但是可以借助蚂蚁芝麻信用来做验证风控即可!

⑻ 如何利用大数据做金融风控

大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。

金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。

传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据 纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人 的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。普惠在线

互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据,判断借款人的还 款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充,一般是利用数据的关联分析来判断借款人的信用情况,借助数据模型来揭示某些行为特征和信用 风险之间的关系。

互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。

常用的互联网金融大数据风控方式有以下几种:

验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以借助国政通的数据来验证姓名、身份证号,借助银联数据来验证银行卡号和姓名,利用运营商数据来验证手机号、姓名、身份证号、家庭住址。

如果借款人是欺诈用户,这五个信息都可以买到。这个时候就需要进行人脸识别了,人脸识别等原理是调用国政通/公安局 API接口,将申请人实时拍摄的照片/视频同客户预留在公安的身份证进行识别,通过人脸识别技术验证申请人是否是借款人本人。

其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
分析提交的信息来识别欺诈

大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷和学生贷都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往 往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相 同、单位名称相同、甚至居住的楼层和号码都相同。还有一些填写假的小区、地址和单位名称以及电话等。

如果企业发现一些重复的信息和电话号码,申请人欺诈的可能性就会很高。

分析客户线上申请行为来识别欺诈

欺诈用户往往事先准备好用户基本信息,在申请过程中,快速进行填写,批量作业,在多家网站进行申请,通过提高申请量来获得更多的贷款。

企业可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等,如果这些申请时间大大小于 正常客户申请时间,例如填写地址信息小于2秒,阅读条款少于3秒钟,申请贷款低于20秒等。用户申请的时间也很关键,一般晚上11点以后申请贷款的申请 人,欺诈比例和违约比例较高。

这些异常申请行为可能揭示申请人具有欺诈倾向,企业可以结合其他的信息来判断客户是否为欺诈用户。
利用黑名单和灰名单识别风险

互联网金融公司面临的主要风险为恶意欺诈,70%左右的信贷损失来源于申请人的恶意欺诈。客户逾期或者违约贷款中至少有30%左右可以收回,另外的一些可以通过催收公司进行催收,M2逾期的回收率在20%左右。

市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。

黑名单来源于民间借贷、线上P2P、信用卡公司、小额借贷等公司的历史违约用户,其中很大一部分不再有借贷行为,参考价值有限。另外一个主要来源是催收公司,催收的成功率一般小于于30%(M3以上的),会产生很多黑名单。

灰名单是逾期但是还没有达到违约的客户(逾期少于3个月的客户),灰名单也还意味着多头借贷,申请人在多个贷款平台进行借贷。总借款数目远远超过其还款能力。

黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的 黑名单来提高查得率。央行和上海经信委正在联合多家互联网金融公司建立统一的黑名单平台,但是很多互联网金融公司都不太愿意贡献自家的黑名单,这些黑名单 是用真金白银换来的教训。另外如果让外界知道了自家平台黑名单的数量,会影响其公司声誉,降低公司估值,并令投资者质疑其平台的风控水平。

利用移动设备数据识别欺诈
行为数据中一个比较特殊的就是移动设备数据反欺诈,公司可以利用移动设备的位置信息来验证客户提交的工作地和生活地是否真实,另外来可以根据设备安装的应用活跃来识别多头借贷风险。

欺诈用户一般会使用模拟器进行贷款申请,移动大数据可以识别出贷款人是否使用模拟器。欺诈用户也有一些典型特征,例如很多设备聚集在一个区域,一起 申请贷款。欺诈设备不安装生活和工具用App,仅仅安装和贷款有关的App,可能还安装了一些密码破译软件或者其他的恶意软件。

欺诈用户还有可能不停更换SIM卡和手机,利用SIM卡和手机绑定时间和频次可以识别出部分欺诈用户。另外欺诈用户也会购买一些已经淘汰的手机,其机器上面的操作系统已经过时很久,所安装的App版本都很旧。这些特征可以识别出一些欺诈用户。

利用消费记录来进行评分

大会数据风控除了可以识别出坏人,还可以评估贷款人的还款能力。过去传统金融依据借款人的收入来判断其还款能力,但是有些客户拥有工资以外的收入,例如投资收入、顾问咨询收入等。另外一些客户可能从父母、伴侣、朋友那里获得其他的财政支持,拥有较高的支付能力。

按照传统金融的做法,在家不工作照顾家庭的主妇可能还款能力较弱。无法给其提供贷款,但是其丈夫收入很高,家庭日常支出由其太太做主。这种情况,就需要消费数据来证明其还款能力了。

常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。例如头等舱乘坐次数,物业费高低、高尔夫球俱乐部消费,游艇俱乐部会员费用,奢侈品会员,豪车4S店消费记录等消费数据可以作为其信用评分重要参考。

互联网金融的主要客户是屌丝,其电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。

参考社会关系来评估信用情况

物以类聚,人与群分。一般情况下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

参考借款人常联系的朋友信用评分可以评价借款人的信用情况,一般会采用经常打电话的朋友作为样本,评估经常联系的几个人(不超过6六个人)的信用评分,去掉一个最高分,去掉一个最低分,取其中的平均值来判断借款人的信用。这种方式挑战很大,只是依靠手机号码来判断个人信用可信度不高。一般仅仅用于反欺诈识别,利用其经常通话的手机号在黑名单库里面进行匹配,如果命中,则此申请人的风险较高,需要进一步进行调查。

参考借款人社会属性和行为来评估信用

参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违 约率最高,30岁左右的人违约率最低。贷款用于家庭消费和教育的贷款人,其贷款违约率低;声明月收入超过3万的人比声明月收入低于1万5千的人贷款违约率 高;贷款次数多的人,其贷款违约率低于第一次贷款的人。

经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。

午夜经常上网,很晚发微博,生活不规律,经常在各个城市跑的申请人,其带贷款违约率比其他人高30%。刻意隐瞒自己过去经历和联系方式,填写简单信 息的人,比信息填写丰富的人违约概率高20%。借款时间长的人比借款时间短短人,逾期和违约概率高20%左右。拥有汽车的贷款人比没有汽车的贷款人,贷款 违约率低10%左右。

利用司法信息评估风险

涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。

寻找这些涉毒涉赌的嫌疑人,可以利用当地的公安数据,但是难度较大。也可以采用移动设备的位置信息来进行一定程度的识别。如果设备经常在半夜出现在 赌博场所或赌博区域例如澳门,其申请人涉赌的风险就较高。另外中国有些特定的地区,当地的有一部分人群从事涉赌或涉赌行业,一旦申请人填写的居住地址或者 移动设备位置信息涉及这些区域,也要引起重视。涉赌和涉毒的人员工作一般也不太稳定或者没有固定工作收入,如果申请人经常换工作或者经常在某一个阶段没有 收入,这种情况需要引起重视。涉赌和涉毒的人活动规律比较特殊,经常半夜在外面活动,另外也经常住本地宾馆,这些信息都可以参考移动大数据进行识别。

总之,互联网金融的大数据风控采用了用户社会行为和社会属性数据,在一定程度上补充了传统风控数据维度不足的缺点,能够更加全面识别出欺诈客户,评价客户的风险水平。互联网金融企业通过分析申请人的社会行为数据来控制信用风险,将资金借给合格贷款人,保证资金的安全。

⑼ 信贷大数据怎么查

信贷大数据的查询有以下几种方法:

1、查央行征信
现在接入央行征信系统的网贷也在增多,接入央行的网贷,一般都比较正规具有较为雄厚的资金实力。如果你所借网贷属于这个类型的,那么想搞清楚名下网贷以及银行贷款状况,那么可以直接去往当地人民银行打印征信也可以在人民银行征信中心官网查询检测。

2、查网贷大数据
国内大部分网贷,无论是上征信还是未上征信的,都会接入网贷大数据系统之中,如果对自己的网贷大数据有不清楚的地方,可以选择去查一下。

3、查手机短信
网贷机构一般都会设置短信提醒,在贷款还款日临近的时候,会以发短信的形式对借贷人进行催收。借贷之后,如果贷后管理没有做好,可以多关注一下短信。但是也要谨慎,因为不排除有不法分子获取个人信息的可能。

互联网金融时代,虽然贷款很方便,一定要理性消费,理性借贷,理性借贷。注意按时还款,维护良好的信用记录。如果对自己的网贷数据有担心的朋友可以在微信里的首页搜索:米米数据。自行查询网贷数据报告,该数据平台对接了2000多家网贷数据库,数据查询的较为准确。无论是网贷申请记录,网贷数据报告,网黑指数分,命中风险提示,逾期信息,起诉或者仲裁案件等数据都能够一一显示出来。

相比央行的个人征信报告,个人信用记录的氛围更加广泛,出具的机构也更加多元,像米米数据、芝麻信用分、腾讯信用分、百行征信等,都属于个人信用记录的一部分,整体而言更类似于网上说的大数据征信,是传统个人征信报告的有益补充。

目前,国家正在构建一张全方位无死角的“信用大网”,联通社会,信息共享,无论是征信报告还是个人信用记录,都是其中的重要组成部分。保护好自己的信用,对每个人来说,信用才是最大的资产与财富。

阅读全文

与金融公司查大数据怎么做相关的资料

热点内容
总统大选贵金属 浏览:220
中小企业融资成本高的对策 浏览:637
期货投机度计算 浏览:649
西安注册金融类公司 浏览:985
南京期货交易所 浏览:373
pg外汇集团公司 浏览:977
甘谷县金融机构存款余额 浏览:250
金融机构疫情期间 浏览:970
1月23日日元对人民币汇率 浏览:48
股票澳优奶粉 浏览:567
立信理财为什么收益那么高 浏览:576
浏阳市中小企业融资担保 浏览:639
基金跟理财产品哪个银行好申请 浏览:358
支付第三方佣金 浏览:212
预算股票 浏览:118
利率期货如何获利 浏览:263
黄金什么时候会大涨 浏览:303
公司大股东是保险公司 浏览:426
银行理财产品利率调低说明什么 浏览:830
一年内到期的非流动资产金融资产 浏览:772