导航:首页 > 投资金融 > 大数据在金融机构银行的应用

大数据在金融机构银行的应用

发布时间:2022-03-04 23:03:00

『壹』 大数据技术在金融行业中的典型应用

大数据技术在金融行业中的典型应用
近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。
大数据在金融行业的典型应用场景
大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。第一,数据体量大(Volume),海量性也许是与大数据最相关的特征。第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。
金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性,让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。
当前,大数据在金融行业典型的应用场景有以下几个方面:
在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。
证券行业的应用主要表现为:一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度,帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。
在互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。
金融大数据的典型案例分析
为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。
该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。
系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。
网络的搜索技术正在全面注入网络金融。网络金融使用的梯度增强决策树算法可以分析大数据高维特点,在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。网络“磐石”系统基于每日100亿次搜索行为,通过200多个维度为8.6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为网络内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500家社会金融机构,帮助其提升了整体风险防控水平。
金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。
二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。
三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。
四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。
以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。

『贰』 大数据在金融业的应用可以发挥哪些作用

有了大数据,自然就要有大数据技术,即从各种各样类型的巨量数据中,快速获取有价值信息的技术,强调快,这是大数据技术与传统数据挖掘技术的重要区别。
从巨量数据中提取的有价值信息,即是大数据在各个领域的具体运用,比如基于大数据进行客群的细分,进而提供定制化服务;基于大数据模拟现实环境,进而进行精准评估和预测;基于大数据进行产品和模式创新,降低业务成本、提升经营效率等等。

『叁』 大数据在金融领域中有哪些应用

大数据在金融领域中有哪些应用?应用很广,定价、授信、风控领域尤其多,我这边主要用到的分析软件是单位的帆软FineBI系统,应用案例随便说两个:
车险。其实根据车主的日常行车路线、里程、行车习惯、出险记录、职业、年龄、性别,可以给出非常不同的定价。比如一个开中级车,每天固定路线往返几公里通勤的熟练女白领车主,和一个开同样车型每天在珠三角或者长三角跑生意的中年暴躁小老板车主,假设后者出险概率是前者的3倍,那么完全可以定3倍于前者的价格(商业部分)。对于保险公司,前者才是优质客户,后者做了生意也是赔钱货,不如赶到竞争对手那里去。

贷款。现在各种小额贷款、消费贷款、供应链金融,都是在吃4大行懒得吃的散客市场,之所以他们懒得吃,就是怕麻烦。最麻烦的就是授信环节,对于一个没有固定资产等担保物的客户,能授信多少额度是个问题。淘宝能做小微是因为商家的流水在他们手里,白领的消费贷敢做是因为有稳定的现金流收入。但除了淘宝可以做到比较准确的模型,其他的业务都非常的粗放,基本每个领域都是根据几条死规则来做业务。这意味着这个市场还有很大的潜力可以挖掘,比如一个小老板,其实风险不大,他需要100w周转,但你没把握估算他的风险,只敢贷50w出去,就少赚了那50w的利息。

『肆』 大数据目在银行主要应用于以下哪个领域

你好,目前在银行使用大数据,主要集中在客户管理,以及风险防控方面。

『伍』 大数据在金融领域有何应用

你好!大数据在当今社会任何一个领域都有很大用处,比如金融领域,这样可以通过大数据帮助投资者投资

『陆』 大数据能否运用于银行业

可以!但想要充分发挥大数据技术的作用,必须要求数据足够多、足够规范,才能在此基础上进行分析和预测。同时,随着信息化改造的逐步深化,现代银行多使用电子文件代替了纸质文件,更易引用和保存,目前数据库编程技术足够成熟,在银行对现有数据进行整合之后,由相关数据库编程技术人员通过创建银行内部数据库,实现数据的完整性和统一性,为大数据分析和预测打下基础,进而推动银行业务的拓展。如:使用大数据技术实现发现潜在客户和预测投资风险等功能。

『柒』 大数据技术在金融行业有哪些应用前景

大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到10年,金融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。

『捌』 金融机构银行大数据的应用有哪些

银行多源异构的数据类型是首先需要被考虑的。只有将多源异构的数据处理好,为应用建设打好基础,银行建设的大数据项目才有意义。银行的数据类型可分为结构化数据、半结构化数据与非结构化数据三大类型。

阅读全文

与大数据在金融机构银行的应用相关的资料

热点内容
长期理财基金 浏览:404
悟空理财怎么修改银行卡号 浏览:854
手机app银行理财靠谱吗 浏览:176
广州a股日内交易员股生钱 浏览:656
人民币对越南盾汇率app 浏览:531
ok点卡抵扣杠杆手续费 浏览:313
杠杆原理起源于什么公司 浏览:781
西安老版人民币汇率 浏览:591
盒与鲜生金融服务 浏览:660
定投基金蚂蚁财富还是理财通好 浏览:530
昨日日元汇率查询 浏览:422
期货量仓指标cjl图解 浏览:210
秒交易登陆 浏览:614
货币理财基金怎么样 浏览:873
发行股票的金融机构有哪些 浏览:223
淘宝客退款之后再买还有佣金 浏览:505
西飞集团董事长级别 浏览:93
银行产品贵金属贷款 浏览:394
搜索一下上港集团股票行情 浏览:501
大股东变更股票走势 浏览:376