㈠ 金融领域七大数据科学应用实践案例
金融领域七大数据科学应用实践案例
近年来,数据科学和机器学习应对一系列主要金融任务的能力已成为一个特别重要的问题。 公司希望知道更多技术带来的改进以及他们如何重塑业务战略。
为了帮助您回答这些问题,我们准备了一份对金融行业影响最大的数据科学应用清单。 它们涵盖了从数据管理到交易策略的各种业务方面,但它们的共同点是增强金融解决方案的巨大前景。
自动化风险管理
风险管理是金融机构极其重要的领域, 负责公司的安全性,可信度和战略决策 。 过去几年来,处理风险管理的方法发生了重大变化,改变了金融部门的性质。 从未像现在这样,今天的机器学习模型定义了业务发展的载体。
风险可以来自很多来源,例如竞争对手,投资者,监管机构或公司的客户。 此外,风险的重要性和潜在损失可能不同。 因此,**主要步骤是识别,优先考虑和监控风险,这是机器学习的完美任务。 **通过对大量客户数据,金融借贷和保险结果的训练,算法不仅可以增强风险评分模型,还可以提高成本效率和可持续性。
数据科学和人工智能(AI)在风险管理中最重要的应用是识别潜在客户的信誉。 为了为特定客户建立适当的信用额度,公司使用机器学习算法来分析过去的支出行为和模式。 这种方法在与新客户或具有简短信用记录的客户合作时也很有用。
虽然金融风险管理流程的数字化和自动化处于早期阶段,但潜力巨大。 金融机构仍需要为变革做好准备,这种变革通过实现核心财务流程的自动化,提高财务团队的分析能力以及进行战略性技术投资。 但只要公司开始向这个方向发展,利润就不会让自己等待。
管理客户数据
对于金融公司来说,数据是最重要的资源。因此,高效的数据管理是企业成功的关键。今天,在结构和数量上存在大量的金融数据:从社交媒体活动和移动互动到市场数据和交易细节。金融专家经常需要处理半结构化或非结构化数据,手动处理这些数据是一个巨大的挑战。
然而,对于大多数公司来说,将机器学习技术与管理过程集成仅仅是从数据中提取真实知识的必要条件。**人工智能工具,特别是自然语言处理,数据挖掘和文本分析有助于将数据转化为智能数据治理和更好的业务解决方案,从而提高盈利能力。**例如,机器学习算法可以通过向客户学习财务历史数据来分析某些特定财务趋势和市场发展的影响。最后,这些技术可用于生成自动报告。
预测分析
分析现在是金融服务的核心。 值得特别关注的是预测分析,它揭示了预测未来事件的数据模式,可以立即采取行动。 通过了解社交媒体,新闻趋势和其他数据源,这些复杂的分析方法已经实现了预测价格和客户终生价值,未来生活事件,预期流失率和股市走势等主要应用。 最重要的是,这种技术可以帮助回答复杂的问题 - 如何最好地介入。
实时分析
实时分析通过分析来自不同来源的大量数据从根本上改变财务流程,并快速识别任何变化并找到对其的最佳反应。财务实时分析应用有三个主要方向:
欺诈识别
**金融公司有义务保证其用户的最高安全级别。**公司面临的主要挑战是找到一个很好的欺诈检测系统,罪犯总是会采用新的方法并设置新的陷阱。**只有称职的数据科学家才能创建完美的算法来检测和预防用户行为异常或正在进行的各种欺诈工作流程。**例如,针对特定用户的不寻常金融购买警报或大量现金提款将导致阻止这些操作,直到客户确认为止。在股票市场中,机器学习工具可以识别交易数据中的模式,这可能会指示操纵并提醒员工进行调查。然而,这种算法最大的优势在于自我教学的能力,随着时间的推移变得越来越有效和智能化。
消费者分析
实时分析还有助于更好地了解客户和有效的个性化。先进的机器学习算法和客户情绪分析技术可以从客户行为,社交媒体互动,他们的反馈和意见中获得见解,并改善个性化并提高利润。由于数据量巨大,只有经验丰富的数据科学家才能精确分解。
算法交易
这个领域可能受实时分析的影响最大,因为每秒都会受到影响。根据分析传统和非传统数据的最新信息,金融机构可以做出实时有利的决策。而且由于这些数据通常只在短时间内才有价值,因此在这个领域具有竞争力意味着使用最快的方法分析数据。
在此领域结合实时和预测分析时,另一个预期会开启。过去,金融公司不得不聘用能够开发统计模型并使用历史数据来创建预测市场机会的交易算法的数学家。然而,今天人工智能提供了使这一过程更快的技术,而且特别重要的是 - 不断改进。
因此, 数据科学和人工智能在交易领域进行了革命,启动了算法交易策略。 世界上大多数交易所都使用计算机,根据算法和正确策略制定决策,并考虑到新数据。 人工智能无限处理大量信息,包括推文,财务指标,新闻和书籍数据,甚至电视节目。 因此,它理解当今的全球趋势并不断提高对金融市场的预测。
总而言之,实时和预测分析显着改变了不同金融领域的状况。 通过hadoop,NoSQL和Storm等技术,传统和非传统数据集以及最精确的算法,数据工程师正在改变财务用于工作的方式。
深度个性化和定制
企业认识到,在当今市场竞争的关键步骤之一是通过与客户建立高质量的个性化关系来提高参与度。 这个想法是分析数字客户体验,并根据客户的兴趣和偏好对其进行修改。 人工智能在理解人类语言和情感方面取得重大进展,从而将客户个性化提升到一个全新的水平。 数据工程师还可以建立模型,研究消费者的行为并发现客户需要财务建议的情况。 预测分析工具和高级数字交付选项的结合可以帮助完成这项复杂的任务,在最恰当的时机指导客户获得最佳财务解决方案,并根据消费习惯,社交人口趋势,位置和其他偏好建议个性化服务。
结论
对于金融机构来说,数据科学技术的使用提供了一个从竞争中脱颖而出并重塑其业务的巨大机会。大量不断变化的财务数据造成了将机器学习和AI工具引入业务不同方面的必要性。
我们认为,我们主要关注金融领域的7大数据科学用例,但还有很多其他值得一提的。 如果您有任何进一步的想法,请在评论部分分享您的想法。
㈡ 如何进行互联网金融运营数据的分析,都有哪些方法
来源于:知乎
大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?
我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。
一 、互联网金融用户四大行为特征
互联网金融平台用户有四大行为特征:
第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:
而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
可以看到,每隔一段时间,这个用户就会有一段集中的、大量的交互行为。当用户购买完成后,用户的交互行为又变得很少,可能偶尔来看看产品的收益率,但整体的交互指标不会太高,直到他下一次购买。这个用户理财需求的周期是一个月左右。
最后一个特点是「很强的特征性」,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。
二、互联网金融用户运营的三大步骤
针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:
1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
这张图是整体转化漏斗,从不同维度可以做对比,比如我们先选出流量前 10 的渠道:
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。
㈢ 金融行业有哪些领域需要大量运用数据分析
1.宏观经济分析:国内外宏观经济数据分析、政策走势分析、经济形势分析。
2.证券数据分析:通过建立数据模型,分析股票指数数据,预测股票走势。
3.财务报表分析:通过建立分析模型,分析财务状况,关联公司之间的经济往来情况。
4.投资项目评估:多维度分析投资项目,通过数据进行投资决策支持,减少投资风险。
㈣ 金融数据分析工作内容主要是什么需要具备哪些技能后期是否有发展空间
1维护公司运营指标体系,根据业务线建立数据分析模型2研究用户生命周期用户画像几个人行为习惯,建立数学模型,理清关系的结论,写分析报告3不断完善和优化模型和数据分析结果。需要具备本科以上数学,统计计算机经济相关专业,熟悉统计分析数据挖掘,熟悉SPSS. sad. stata等统计分析平能熟悉操作一种软件3是具备独立编写数据分析报告能力,并能给出建议4具有数据挖掘相关项目实施经验者优先考虑,后期有发展空间
㈤ 金融数据如何分析以及用到的工具
数据分析分好多种,现敬铅基行的主要有两种,基本面分析和技术分析。基本面分激慎析又分好多种比如行业分析和公司分析等,所用的数据和处理数据的方式都有不同,技术分析也分很多种,如亮谨波浪理论、K线图等,一般只用基本的画线工具和简单的数据处理公式(如ma,macd),普通的交易软件一般自带。
㈥ 如何进行互联网金融运营数据的分析
做运营必须要对数据敏感,以下指标需要关注:
1、用户注册数,首先你要知道你的注册数据
2、注册成本,就是单个用户成功注册的成本
3、投资成本,就是注册用户到投资的成本
4、复投率,这个很重要,投资人数再多,如果没有复投意义不大,因为拉新的成本比留住老用户要大的多。
5、ROI,其实说了这么多,企业管理者就看重一个指标就是投资回报率,衡量一个推广渠道的优劣,这个是核心指标
知道了哪个渠道的ROI最高,就可以对你的推广策略做参考,这样就能形成良性循环。
㈦ 金融数据分析的方法
1、明确一点,各行各业都会产生数据,因岩猜而也需要数据分析方面的人才,拿商业数据分析来说,分为三个层面
2、第一层通用技能,包括数据编程、数据存储、大数据技术等。
3、第二层商业分析,碧圆考验的粗慧型是分析思维能力。
4、第三层是熟悉业务,深度了解行业。
㈧ 如何用大数据分析金融数据
有大数据分析工具的,免费的,你找一下大数据魔镜。
㈨ 银行或金融单位的数据分析岗需要具备什么能力
最重要还是数据治理和数据分析的能力!
近年来,随着大数据产业的蓬勃发展,企业和政府对于自身数据资产的价值也产生了重新的认识。但遗憾的是数据本身并不能直接产生价值。当我们想利用数据产生价值的时候,很多问题都会暴露出来,比如:数据标准缺失,数据源头不清晰,数据质量缺乏监管等。这就要求我们要有统一的数据标准和良好的数据质量来构成数据价值实现的基础。而数据治理恰是保障这一基础的存在。
国际数据管理协会(DAMA)对数据治理给出的定义是:数据治理是对数据资产管理行使权力和控制的活动集合。它是一个管理体系,包括组织、制度、流程、工具。
在国内企业的实际应用中,一般将数据治理和数据管理综合考虑,认为数据治理是将数据作为组织资产而展开的一系列的集体化工作,包括从组织架构、管理制度、操作规范、信息技术应用、绩效考核支持等多个维度对组织的数据模型、数据架构、数据质量、数据安全、数据生命周期等方面进行全面的梳理、建设以及持续改进的过程。
五、 数据和AI中台
随着金融业正在迈入第四个重大发展阶段--数字化时代,给各金融机构带来了发展机遇,同时也伴随着严峻的挑战。如何解决数据孤岛、新应用与老系统结合难?现有IT能力不足以支撑业务的快速变化?数据调用方式多样且标准不统一质量差?以及数据资源未被挖掘数字化能力得不到释放等问题,是企业面临的共同难题。数据集成和数据资产管理是解决这些问题的有效途径之一。
本课程将从如何进行有效的数据集成、各种数据平台建设介绍、如何有效开展数据治理,以及数据资产管理与数据中台的建设这四个大的方面进行开展。帮助企业在数字化进程中快速建立系统间的数据集成体系,支撑用户数据集成应用的快速实现;提供完善数据管理体系和有效的完成数据整合方案,支撑起上层数据的挖掘、分析应用;对企业的发展战略和业务创新提供有效的数据支撑,洞察企业的运营状态和市场趋势等,提高企业新业务灵活性,创建数据应用敏捷环境。
㈩ 数据分析的五个基本步骤在金融分析中的应用
1、确定目标
在进行数据分析之前,我们需要结合自己的业务确定数据分析的目标是什么,可衡量的指标是什么,对指标进行拆分,找出可收集数据的最小单元,这样做运银能够针对性的进行数据分析,提高数据运营效率,避免数据采集过多,造成无用数据被浪费。
2、搜集数据
当我们确定好目标后,就需要进行针对性的搜集数据,这里所说的搜集数据既包括通过埋点采集的用户全生命周期数据,也包括自己网上收集的数据,如行业数据报告,还包括通过访问或者电话等得到的人工整理数据。至于采用哪些具体的数据,还需要根据数据分析的目标而定。
3、整理数据
我们搜集好数据之后旁拿宴,需要对数据进行整理,尤其是搜集的数据来源很多的情况下敏返,比如埋点采集的数据,网上收集的数据,人工整理数据,有时候会出现重复、错乱等情况,就需要整理数据,尽最大可能提高数据的准确性。
4、分析数据
分析数据诸葛君为大家分享过多次,国庆期间的八大数据分析模型就是用来分析数据的,需要注意的是,在分析数据的过程中,我们要结合自己的产品,选择合适的数据分析模型,有必要的情况下,需要自己去定义自己的分析模型,总之思路是:方法在这里,怎么用在于你。
5、可视化呈现
身为数据运营者,数据分析的结果往往是需要给领导和整个团队汇报的,这个时候我们就需要对数据分析结果做可视化的呈现,一般情况下用图表的形式呈现即可。通过数据分析找出业务问题所在,同时提出自己的解决方案,不光要知道为什么,还需要知道怎么办。
总结:以上五大步骤构成一个完整的数据分析过程,从开始思考目标到最后可视化呈现,从发现问题到提出解决方案,身为数据运营者,我们既需要有整体思维,能够从全流程去把握数据分析方法,也需要对细节极致追求,优化每一个步骤,比如:搜集数据时如何才能更加快速准确,就可以作为优化的目标。当我们能够从整体和细节都游刃有余得进行数据分析的时候,你就是一个合格甚至优秀的数据运营者。