导航:首页 > 股市基金 > 黄金分割的应用

黄金分割的应用

发布时间:2021-03-07 21:07:23

① 黄金分割的应用(举例)

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。

菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。

利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。

其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。

发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

|..........a...........|

+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -

|......b......|..a-b...|
通常用希腊字母 表示这个值。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为根号5+1/2
黄金分割数是无理数,前面的1024位为:

1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...

② 黄金分割比在生活中有哪些应用

时间,季节,温度的黄金比例。每年的秋季7,8月份正好位于一年的黄金分割专点上,此时是人体属免疫力最佳的时节。人的一天中,约三分之二的时间用于工作和学习,三分之一的时间用于睡觉和休息最适宜。还有通常人在22摄氏度到24摄氏度的温度区间中感觉最适宜,这是因为这个温度区间与人体的体温37摄氏度成黄金比例。

③ 黄金分割在生活中的应用

解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,版所有售出的汽车的进权价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:27-0.1×2=26.8,故答案为:26.8;(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28-[27-0.1(x-1)]=(0.1x
0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x
0.9)
0.5x=12,整理,得x2
14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x
0.9)
x=12,整理,得x2
19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去,答:需要售出6部汽车.

④ 数学中黄金分割在生活中的应用

有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。

数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。

0.618与战略战役

0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。

也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?

0.618与武器装备

在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则也早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。

当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。

实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。

在大炮射击中,如果某种间瞄火炮的最大射程为12公里,最小射程为4公里,则其最佳射击距离在9公里左右,为最大射程的2/3,与0.618十分接近。在进行战斗部署时,如果是进攻战斗,大炮阵地的配置位置一般距离己方前沿为1/3倍最大射程处,如果是防御战斗,则大炮阵地应配置距己方前沿2/3倍最大射程处。

0.618与战术布阵

在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。其主要攻击点的选择,恰在黄金分割点上。

把黄金分割律在战争中体现得最为出色的军事行动,还应首推成吉思汗所指挥的一系列战事。数百年来,人们对成吉思汗的蒙古骑兵,为什么能像飓风扫落叶般地席卷欧亚大陆颇感费解,因为仅用游牧民族的彪悍勇猛、残忍诡谲、善于骑射以及骑兵的机动性这些理由,都还不足以对此做出令人完全信服的解释。或许还有别的更为重要的原因?仔细研究之下,果然又从中发现了黄金分割律的伟大作用。蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵形中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。

马其顿与波斯的阿贝拉之战,是欧洲人将0.618用于战争中的一个比较成功的范例。在这次战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。这一战争的深刻影响直到今天仍清晰可见,在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。

两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。让我们以海湾战争为例。战前,据军事专家估计,如果共和国卫队的装备和人员,经空中轰炸损失达到或超过30%,就将基本丧失战斗力。为了使伊军的损耗达到这个临界点,美英联军一再延长轰炸时间,持续38天,直到摧毁了伊拉克在战区内428辆坦克中的38%、2280辆装甲车中的32%、3100门火炮中的47%,这时伊军实力下降至60%左右,这正是军队丧失战斗力的临界点。也就是将伊拉克军事力量削弱到黄金分割点上后,美英联军才抽出“沙漠军刀”砍向萨达姆,在地面作战只用了100个小时就达到了战争目的。在这场被誉为“沙漠风暴”的战争中,创造了一场大战仅阵亡百余人奇迹的施瓦茨科普夫将军,算不上是大师级人物,但他的运气却几乎和所有的军事艺术大师一样好。其实真正重要的并不是运气,而是这位率领一支现代大军的统帅,在进行战争的运筹帷幄中,有意无意地涉及了0.618,也就是说,他多多少少托了黄金分割律的福。

此外,在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。

拿破仑大帝败于黄金分割线?

0.618不仅在武器和一时一地的战场布阵上体现出来,而且在区域广阔、时间跨度长的宏观的战争中,也无不得到充分地展现。

一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。

1941年6月22日,纳粹德国启动了针对苏联的“巴巴罗萨”计划,实行闪电战,在极短的时间里,就迅速占领了的苏联广袤的领土,并继续向该国的纵深推进。在长达两年多的时间里,德军一直保持着进攻的势头,直到1943年8月,“巴巴罗萨”行动结束,德军从此转入守势,再也没能力对苏军发起一次可以称之为战役行动的进攻。被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。

古希腊巴特农神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目

⑤ 黄金分割的应用实例

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,这一回比值能够引起人答们的美感,被认为是建筑和艺术中最理想的比例。
画家们发现,按0.618:1来设计的比例,画出的画最优美,在达·芬奇的作品《维特鲁威人》、《蒙娜丽莎》、还有《最后的晚餐》中都运用了黄金分割。而现今的女性,腰身以下的长度平均只占身高的0.58,因此古希腊的著名雕像断臂维纳斯及太阳神阿波罗都通过故意延长双腿,使之与身高的比值为0.618。建筑师们对数字0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,希腊雅典的巴特农神庙,都有黄金分割的足迹。

⑥ 黄金分割在股市中怎么应用

你好,股票黄金分割理论运用要点:
【1】以近期走势中的高点或低点为为基内础,当股价上容涨时,以底位股价为基数,跌幅在达到某一黄金比时较可能受到支撑。当行情接近尾声,股价发生急升或急跌后,其涨跌幅达到某一重要黄金比时,则可能发生转势。
【2】行情发生转势后,无论是止跌转升的反转抑或止升转跌的反转,以近期走势中重要的峰位和底位之间的涨额作为计量的基数,将原涨跌幅按0. 191、0.382、0.5、0.618、0.809分割为五个黄金点。股价在后转后的走势将有可能在这些黄金点上遇到暂时的阻力或支撑。
黄金分割率理论后来被套用到波浪理论中,成为广大投资者熟知的波浪理论主干,被大量的投资人士在实战中加以运用,并被证明是有效的,因此及时到今天,不少该理论仍然是寻找支撑位和压力位的一种重要方法。
风险揭示:本信息不构成任何投资建议,投资者不应以该等信息取代其独立判断或仅根据该等信息作出决策,不构成任何买卖操作,不保证任何收益。如自行操作,请注意仓位控制和风险控制。

⑦ 黄金分割的应用(带图片的)

有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。

数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。

⑧ "黄金分割"有什么应用呢

斐波那契数列与黄金分割关系

黄金分割是我们在生活中接触得比较多的数学美学问题,有了它生活的色彩就更显多彩:建筑师们早就懂得使用黄金分割比了.在公元前3000年建成的埃及法老胡夫的金字塔和公元前432年建成的雅典帕特农神庙就采用了这个神奇之比,因此它的整个结构以及它与外界的配合是那样的和谐美观.我们现在的窗户大小,一般都按黄金分割比制成.在艺术领域里更是神奇.众所周知的维纳斯女神像,她优美的身段可说是完美无缺,而她上下身的比正是黄金分割比.芭蕾舞演员顶起脚尖,正是为了使人体的上下身之比更符合黄金比.在1483年左右完成的"圣久劳姆"画,作画的外框长方形也符合这个出色的黄金分割比.像二胡,提琴这样的弦乐器,当乐师们把它们的码子放在黄金分割比的分点上时,乐器发出的声音是最动人美丽的.
"黄金比"的精确值是0. 学习过一元二次方程的同学都会解方程x^2-x-1=0,它的一个正根是.这个数就是黄金分割比.

数列 前项比后项 与黄金分割的差的绝对值

1 1.000000000000000000 0.381966011250105152
2 0.500000000000000000 0.118033988749894848
3 0.666666666666666667 0.048632677916771819
5 0.600000000000000000 0.018033988749894848
8 0.625000000000000000 0.006966011250105152
13 0.615384615384615385 0.002649373365279464
21 0.619047619047619048 0.001013630297724199
34 0.617647058823529412 0.000386929926365436
55 0.618181818181818182 0.000147829431923334
89 0.617977528089887640 0.000056460660007208
144 0.618055555555555556 0.000021566805660707
233 0.618025751072961373 0.000008237676933475
377 0.618037135278514589 0.000003146528619741
610 0.618032786885245902 0.000001201864648947
987 0.618034447821681864 0.000000459071787016
1597 0.618033813400125235 0.000000175349769613
2584 0.618034055727554180 0.000000066977659331
4181 0.618033963166706530 0.000000025583188319
6765 0.618033998521803400 0.000000009771908552
10946 0.618033985017357939 0.000000003732536909
17711 0.618033990175597087 0.000000001425702238
28657 0.618033988205325051 0.000000000544569797
46368 0.618033988957902001 0.000000000208007153
75025 0.618033988670443186 0.000000000079451663
121393 0.618033988780242683 0.000000000030347835
196418 0.618033988738303007 0.000000000011591841
317811 0.618033988754322538 0.000000000004427689
514229 0.618033988748203621 0.000000000001691227
832040 0.618033988750540839 0.000000000000645991
1346269 0.618033988749648102 0.000000000000246747
2178309 0.618033988749989097 0.000000000000094249
3524578 0.618033988749858848 0.000000000000036000
5702887 0.618033988749908599 0.000000000000013751
9227465 0.618033988749889596 0.000000000000005252
14930352 0.618033988749896854 0.000000000000002006
24157817 0.618033988749894082 0.000000000000000766
39088169 0.618033988749895141 0.000000000000000293
63245986 0.618033988749894736 0.000000000000000112
102334155 0.618033988749894891 0.000000000000000043
165580141 0.618033988749894832 0.000000000000000016
267914296 0.618033988749894854 0.000000000000000006
433494437 0.618033988749894846 0.000000000000000002

发现规律没有?
奇数项与偶数项的比值大于黄金分割数,偶数项与奇数项的比值小于黄金分割数
An/(An+1)当n趋向于无穷大时等于黄金分割比
好象还可以证明

⑨ 黄金分割在生活中的应用及例子

黄金分割在生活来中的应用及例子有以源下几点:

1、姿态优美,身材苗条的时装模特和偏偏起舞的舞蹈演员,他们的腿和身材的比例也近似于0.618的比值.

2.、生活中用的纸为黄金长方形,这样的长方形让人看起来舒服顺眼,正规裁法得到的纸张,不管其大小,如对于、8开、16开、32开等,都仍然是近似的黄金长方形.

3、节目主持人报幕,绝对不会站在舞台的中央,而总是站在舞台的1/3处,站在舞台上侧近于0.618的位置才是最佳的位置.

4、对人体解剖很有研究的意大利画家达·芬奇发现,人的肚脐位于身长的0.618处.科学家们还发现,当外界环境温度为人体温度的0.618倍时,人会感到最舒服.

5、无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据.还有,在古希腊神庙的设计中就用到了黄金分割.人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处.艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美.

⑩ 黄金分割率的具体应用有哪些!

斐波那契序列的特点中有这样一个特点:随着数列项数的增加,前一项与后一回项之比越逼近黄金答分割0.6180339887…….我们把0.6180339887……近似等于0.618,这个数就称为黄金分割率.以后的历史发展,斐波那契数就和黄金分割紧密联系起来,以致把0.618称为PHI(读音为菲).
不光是斐波那契数由这样的规律,凡是满足广义的斐波那契序列的数,他们之间都满足黄金分割.

阅读全文

与黄金分割的应用相关的资料

热点内容
杠杆定律教学视频 浏览:277
在外汇平台注册帐号 浏览:672
外汇中的非农 浏览:42
期货跳空怎么操作 浏览:425
大连友谊集团股票行情 浏览:595
小爱查一下实时汇率港币 浏览:167
360股份怎么买 浏览:728
如何在银行买理财 浏览:136
海洋石油工程股份有限公司怎么样 浏览:688
金牛化工股票行情查询 浏览:991
焦煤期货交割替代品肥煤 浏览:955
金融贷款利率计算器在线计算 浏览:307
均衡汇率的指导价值 浏览:215
1996年6月25日汇率 浏览:741
华泰证券网上办理上海指定交易 浏览:526
足球竞彩怎么赚跟单佣金 浏览:171
金融顾问服务 浏览:747
金融公司资产评估部门 浏览:2
国有金融机构不得代持 浏览:957
期货准考证打印在哪里 浏览:683