⑴ 黄金分割比例
其比值约为0.618
设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面的两个数之和。回例如答:1,1,2,3,5,8,13,21,34,55,89,144·····这个数列为“斐波那契数列”,这些数被称为“斐波那契数”。
经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割是无理数,所以只是不断逼近黄金分割。
(1)黄金分割点比例扩展阅读:
黄金分割比例是使矩形最具美感的比例,即矩形的宽与高之比为1:1.618。在报纸版面设计中,黄金分割比例是最重要的美学参考数据。对开报纸版面的宽与高之比为1:1.4;四开报纸为1:1.5,比较接近黄金分割比例,因此符合读者的审美需求。
在版面内设计的新闻图框,一般也以接近这一比例为佳,常用的图框比例有3:5、5:8、8:13等。当然,这一比例的矩形不是唯一具有美感的形,再加上版面设计中各种因素的影响,不应该也不可能把每条新闻都编排成符合这一比例的矩形。
⑵ 黄金分割线是什么比例
是(√5-1)/2 ,把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
这位朋友 我告诉你吧 做股票看的基本面 k线黄金分割线是不灵的 你不要轻信它 他会让你来回扑空的 相信我 做股票 要学会看基本面 它的业绩如何 来取决如他今后的走向,量能很重要,啥能骗人,量能是没法骗人的。相信我 ,你会赚得盆满钵满的。黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。
⑶ 黄金分割比例是什么
分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。
人体美学中的黄金分割
人体美学观察受到种族、社会、个人各方面因素的影响,牵涉到形体与精神、局部与整体的辩证统一,只有整体的和谐、比例协调,才能称得上一种完整的美。本次讨论的问题主要为美学观察的一些定律。
(一)黄金分割律 这是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。这其实是一个数字的比例关系,即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618 : 1或1 : 0.618,也就是说长段的平方等于全长与短段的乘积。0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。 为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。据研究,从猿到人的进化过程中,骨骼方面以头骨和腿骨变化最大,躯体外形由于近似黄金而矩形变化最小,人体结构中有许多比例关系接近0.618,从而使人体美在几十万年的历史积淀中固定下来。人类最熟悉自己,势必将人体美作为最高的审美标准,由物及人,由人及物,推而广之,凡是与人体相似的物体就喜欢它,就觉得美。于是黄金分割律作为一种重要形式美法则,成为世代相传的审美经典规律,至今不衰! 近年来,在研究黄金分割与人体关系时,发现了人体结构中有14个“黄金点”(物体短段与长段之比值为 0.618),12个“黄金矩形”(宽与长比值为 0.618的长方形)和2个“黄金指数”(两物体间的比例关系为 0.618)。 黄金点:(1)肚脐:头顶-足底之分割点;(2)咽喉:头顶-肚脐之分割点;(3)、(4)膝关节:肚脐-足底之分割点;(5)、(6)肘关节:肩关节-中指尖之分割点;(7)、(8)乳头:躯干乳头纵轴上这分割点;(9)眉间点:发际-颏底间距上1/3与中下2/3之分割点;(10)鼻下点:发际-颏底间距下1/3与上中2/3之分割点;(11)唇珠点:鼻底-颏底间距上1/3与中下2/3之分割点;(12)颏唇沟正路点:鼻底-颏底间距下1/3与上中2/3之分割点;(13)左口角点:口裂水平线左1/3与右2/3之分割点;(14) 右口角点:口裂水平线右1/3与左2/3之分割点。 面部黄金分割律 面部三庭五眼 黄金矩形:(1)躯体轮廓:肩宽与臀宽的平均数为宽,肩峰至臀底的高度为长;(2)面部轮廓:眼水平线的面宽为宽,发际至颏底间距为长;(3)鼻部轮廓:鼻翼为宽,鼻根至鼻底间距为长;(4)唇部轮廓:静止状态时上下唇峰间距为宽,口角间距为长;(5)、(6)手部轮廓:手的横径为宽,五指并拢时取平均数为长;(7)、(8)、(9)、(10)、(11)、(12)上颌切牙、侧切牙、尖牙(左右各三个)轮廓:最大的近远中径为宽,齿龈径为长。
黄金指数:(1)反映鼻口关系的鼻唇指数:鼻翼宽与口角间距之比近似黄金数;(2)反映眼口关系的目唇指数:口角间距与两眼外眦间距之比近似黄金数。 0.618,作为一个人体健美的标准尺度之一,是无可非议的,但不能忽视其存在着“模糊特性”,它同其它美学参数一样,都有一个允许变化的幅度,受种族、地域、个体差异的制约。
(二)比例关系 是用数字来表示人体美,并根据一定的基准进行比较。用同一人体的某一部位作为基准,来判定它与人体的比例关系的方法被称为同身方法(见中图)。分为三组:系数法,常指头高身长指数,如画人体有坐五、立七,即身高在坐位时为头高的五倍、立位时为7或7.5倍;百分数法,将身长视为100%,身体各部位在其中的比例;两分法:即把人体分成大小两部分,大的部分从脚到脐,小的部分为脐到头顶。 标准的面型,其长宽比例协调,符合三停五眼(见右图)。三停是指脸型的长度,从头部发际到下颏的距离分为三等分,即从发际到眉、眉到鼻尖、鼻尖到下颏各分为一等分,各称一停共三停;五眼是指脸型的宽度,双耳间正面投影的长度为五只眼裂的长度,除眼裂外、内此间距为一眼裂长度、两侧外眦角到耳部各有一眼裂长度,
⑷ 黄金分割比例是几比几
黄金分割比例是使矩形最具美感的比例,即矩形的宽与高之比为1:1.618。在报纸版面设计中,黄金分割比例是最重要的美学参考数据。对开报纸版面的宽与高之比为1:1.4;四开报纸为1:1.5,比较接近黄金分割比例,因此符合读者的审美需求。
应答时间:2020-08-21,最新业务变化请以平安银行官网公布为准。
[平安车主贷] 有车就能贷,最高50万
https://b.pingan.com.cn/station/activity/loan/qr-carloan/loantrust.html?source=sa0000632&outerSource=bdzdhhr_zscd&outerid=ou0000250&cid=bdzdhhr_zscd&downapp_id=AM001000065
⑸ 黄金分割的比例是多少
古希腊的毕达哥拉斯和他的学派在数学上有很多创造,著名的黄金分割就是他在专公元前6世纪发现的。
一天,毕达哥属拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,便站在那里仔细聆听,似乎这声音中隐匿着什么秘密。他走进作坊,拿出尺子量了一下铁锤和铁砧的尺寸,发现它们之间存在着一种十分和谐的关系。
回到家里,毕达哥拉斯拿出一根线,想将它分为两段。怎样分才最好呢?经过反复比较,他最后确定按照1∶0.618的比例截断最优美。
后来,德国的美学家泽辛把这一比例称为黄金分割律。这个规律的意思是,整体与较大部分之比等于较大部分与较小部分之比。无论什么物体、图形,只要它各部分的关系都与这种分割法相符,这类物体、图形就能给人最悦目、最美的印象。
中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称其为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。直到19世纪黄金分割这一名称才逐渐通行。
⑹ 黄金分割点比例多少
黄金比又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二版,较大部分与较小部分权之比等于整体与较大部分之比,其比值约为1∶0.618,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。应用在生活中有神奇魅力。
⑺ 黄金分割比例是多少
黄金分割点0.618那是响当当的名字,且看我的博客签名……
关于生活中的黄金分割比,网络中俯拾皆是。大概取两个比较有意思的放在这里,想知道更多,请咨询网络。如果对黄金分割比还不了解的,也参考网络。
人体适合的最佳室温是23度,恰好是人体体温37度的0.618倍。
月球的平均密度(3.4g/cm) 是地球密度(5.5g/cm) 的0.618倍。
……
今天要献给大家的,是黄金分割点的另一种形式——连分数,恐怕你会更加叫绝。
如果用Φ表示黄金分割比,那么:
这个式子的证明是很简单的,因为根据Φ的性质:Φ=1/(1+Φ),再把分子下面的Φ继续用此式带下去,就得到上面精美绝伦的式子了。
不过,我们常见的π,e等数的连分数却没有这样美丽的性质,至少现在没有。不过他们的其他形式却一样的非常漂亮,有兴趣参见我的文章:《数学启示之美与不美》
说起数学之美,就一定要说0.618,只是,目前对于这方面我除了介绍以外,似乎就没有其他的东西可写,我一直在寻找他如此美丽的本质,仍然是一无所获。
不要对其过度崇拜
不过,我们不能因此对黄金分割比注入过多的崇拜,她不能代表全部的美,在经济学里,最美的数是0.707,也就是√2/2。在实际的运用中,也不是什么东西都要按照黄金分割比来设计。比如我们常用的A4纸等,就不是黄金分割比,而是0.707(√2/2)。为何如此设计?那是因为将纸张对折 以后,还可以保持原来的比例。也许只是因为0.618【(√5-1)/2】这个数字无法解释的模糊美吧!如果各位看官还有什么看法,欢迎留言,好的点评我将补充进我的文章。
精彩评论:
无赖 : 一些作品,原作者没有包含某种思想,但是评论家却“看出”连作者自己都没有想过的深度,然后作者身价一日升天 , 一个事物,如果刻意去渲染夸张,自然就能够超越其本身价值,评论者则更成“伯乐”提升地位了。
⑻ 黄金分割比例是多少
黄金分割最早见于古希腊和古埃及。黄金分割又称黄金率、中外比,即把一根线段分为长短不等的a、b两段,使其中长线段的比(即a+b)等于短线段b对长线段a的比,列式即为a:(a+b)=b:a,其比值为0.6180339……这种比例在造型上比较悦目,因此,0.618又被称为黄金分割率。
??黄金分割长方形的本身是由一个正方形和一个黄金分割的长方形组成,你可以将这两个基本形状进行无限的分割。由于它自身的比例能对人的视觉产生适度的刺激,他的长短比例正好符合人的视觉习惯,因此,使人感到悦目。黄金分割被广泛地应用于建筑、设计、绘画等各方面。
??在摄影技术的发展过程中,曾不同程度地借鉴并融汇了其他艺术门类的精华,黄金分割也因此成为摄影构图中最神圣的观念。应用在摄影上最简单的方法就是按照黄金分割率0.618排列出数列2、3、5、8、13、21……并由此可得出2:3、3:5、5:8、8:13、13:21等无数组数的比,这些数的比值均为0.618的近似值,这些比值主要适用于:画面长宽比的确定(如135相机的底片幅面24mmX36mm就是由黄金比得来的)、地平线位置的选择、光影色调的分配、画面空间的分割以及画面视觉中心的确立。摄影构图通常运用的三分法(又称井字形分割法)就是黄金分割的演变,把上方形画面的长、宽各分成三等分,整个画面承井字形分割,井字形分割的交叉点便是画面主体(视觉中心)的最佳位置,是最容易诱导人们视觉兴趣的视觉美点。
??摄影构图的许多基本规律是在黄金分割基础上演变而来的。但值得提醒的是,每幅照片无需也不可能完全按照黄金分割去构图。千篇一律会使人感到单调和乏味。关于黄金分割,重要的是掌握它的规律后加以灵活运用。
⑼ 黄金分割比例是多少
在分割时.在长度来为全长源的约0.618处进行分割.就叫作黄金分割.这个分割点就叫做黄金分割点(通常用φ表示)把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:
(1-0.618)/0.618=0.618
⑽ 黄金分割线的比例是多少
黄金分割线的比例是:0.618:0.382。
黄金分割线是一种古老的数学方内法,黄金分割的创始人是古希腊的毕容达哥拉斯,他在当时十分有限的科学条件下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。
后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为"黄金分割律"。
(10)黄金分割点比例扩展阅读:
黄金分割线股市中最常见、最受欢迎的切线分析工具之一,实际操作中主要运用黄金分割来揭示上涨行情的调整支撑位或下跌行情中的反弹压力位。不过,黄金分割线没有考虑到时间变化对股价的影响,所揭示出来的支撑位与压力位较为固定,投资者不知道什么时候会到达支撑位与压力位。
因此,如果指数或股价在顶部或底部横盘运行的时间过长,则其参考作用则要打一定的折扣。与江恩角度线与江恩弧形相比略有逊色,但这丝毫不影响黄金分割线为实用切线工具的地位。