导航:首页 > 股市基金 > 交易策略编程语言

交易策略编程语言

发布时间:2022-04-26 12:23:01

㈠ 量化投资用什么编程语言研发策略好呢

么以下我就以程序语言的角度来回答
当然如果已经会了某些语言,那你可以使用熟悉的语言去找网上的学习资源会比较快
如果没有特别熟悉的语言,或者是愿意多学一种非常好用的语言
我的建议是学习Python

我从以下几点来分别说明

平台资源

国内外使用Python做云端回测以及运算的免费平台相当的多,例如有 宽客在线,发明者量化,优矿, 等等不胜枚举,可以使用平台的支持以及社区的互相帮助来学习

容易学习

综合以上所说,"目前的环境底下" 我推荐Python.(推荐直接下载 Anaconda的集成开发环境)

期货量化交易编程怎么弄

方法:1、前提是你必须有自己的期货交易账户,每个期货公司都可以开,现在不用出门就可以用手机在线开户。
2、其次,要选择合适的交易软件。其中交易开拓者的软件是最好编程的,很多交易团队基本都在用这个软件。确定账户和交易软件。
3、剩下的就是如何用编程语言编写策略,并将其输入交易软件。编程其实并不难。在程序化交易中,程序化只占程序化交易的30%。好的编程可以简化代码,提高运行速度,增加交易策略的多样性和完整性,实现一些复杂的策略。
4、如果没有这方面的编程能力,可以参加期货交易的相关培训课程。另外70%主要是策略、仓位设置、交易品种选择、程序化交易心态控制、网络设置等的组合管理。
拓展资料:
1、 战略的确定。一个成功的量化交易系统的开发过程必须是恰当的。如何找到一个成功的量化交易策略,是构建量化交易体系的基础。无论是基本面还是技术面,都可以用量化的方法进行分析,进而得出量化的交易策略。比如,从根本上说,GDP的增长和货币流通量的增加可以用定量的方法来分析和描述。技术上,移动平均线和指数smma是物理和化学策略思想的来源。
2、 经典理论。很多量化投资策略思路来源于传统经典投资理论,比如经典商品期货技术分析主要包括技术分析的理论基础、道指理论、图表介绍、趋势基本概念、主要反转形态、持续形态、交易量和仓位兴趣、长期图表和商品指数、移动平均线、摆动指数和相反意见、盘中点图、三点转向和优化点图、艾略特波浪理论、时间周期等等。这些经典理论有的有具体的指标和具体的应用理论,有的只有理论,需要根据理论生成具体的应用指标来完成策略的测试。因此,经典投资理论可以通过量化思维将理论中的具体逻辑量化为指标或事件形成交易信号,通过信号优化检验实现经典理论的投资思路。这种方式可以有效实现经典理论,同时也可以从原有的经典理论中衍生出周边的投资方法,是量化策略发展初期的主流模式。
3、 逻辑推理。逻辑学的战略思维大多来源于宏观基础信息,其量化战略思维是通过对宏观信息的量化处理,梳理出符合宏观基础信息的量化模型。典型的量化策略包括行业轮动量化策略、市场情绪轮动量化策略、上下游供需量化策略等。这种策略思路来源非常广泛,数据一般不规范,很难形成标准。目前,许多对冲基金都有类似的想法来生成量化策略产品。
4、 总结经验。经验总结是量化战略思想的另一个主要来源。在使用量化策略交易之前,市场上有大量经验丰富的投资者,其中许多人在长期稳定回报方面表现突出。因此,他们对市场的看法和交易思路成为了量化策略开发者的模仿对象,有经验的交易者也愿意量化一些他们觉得相对固化、能够获得稳定回报的交易策略,最终可以用机器自动交易,只监控交易。这可以大大减少交易中消耗的能量。在这个前提下,出现了一个与经验丰富的交易者合作的量化策略团队。
操作环境:iPad第九代15.1 交易开拓者4.5.2

㈢ 做量化交易选择什么语言好呢

量化交易,就是把人能够识别的信息变成数字,输入给计算机程序处理,辅助或者代替人类的思考和交易决策。

初学者碰到的第一个问题就是工具的选择。首先大部分交易员本来不会写程序,选择任何一个语言进行策略开发,都有不小的学习成本。更重要的是,选择了一门语言,接下来开发环境、人员招聘、数据接口与平台、甚至同类人群之间的交流、遇到问题后的支持,都跟着被“套牢”。所以从一开始就必须慎重对待。

先给出答案:对于还没有确定一套固定量化环境的,建议用Python。

量化交易员面临的大致选择有:C/C++/java/C#/R/Matlab/excel等。我们从以下几个方面考虑简单做个对比。

注意:这里假设你团队规模在50人以下。

1 学习成本和应用的广泛性

C、C++的特点是速度最快,但要想用好,必须对计算机底层架构、编译器等等有较好的理解,这是非计算机专业的人很难做到的,对于做量化交易来说更是没有必要。

Java本来是SUN的商业产品,有学习成本和体系的限制,也不适合。

Excel面对GB级别的数据无能为力,这里直接排除。

Python、R和Matlab学起来都简单,上手也快,可以说是“一周学会编程”。但R和Matlab一般只用来做数据处理,而Python作为一门强大的语言,可以做任何事,比如随时写个爬虫爬点数据,随时写个网页什么的,更何况还要面对处理实时行情的复杂情况。

2 开始做量化分析后,哪个用起来碰到问题最少,最方便省事?

用历史数据的回测举例。假设我们有2014年所有股票的全年日线,现在我们想看看600001的全年前10个最高股价出现在什么时候。python世界有个强大的pandas库,所以一句话就解决问题:

dailybar[dailybar [‘code’]==‘600001’].sort_values([‘close’].head(10)

R/Mathlab等科学语言也可以做到。

C/C++没有完备的第三方库。如果为了做大量的计算,要自己实现、维护、优化相应的底层算法,是一件多么头疼的事。

Python从一开始就是开源的,有各种第三方的库可以现成使用。这些底层功能库让程序员省去了“造轮子”的时间,让我们可以集中精力做真正的策略开发工作。

3 现在我们更进一步,要做实时行情分析和决策

以A股的入门级L1数据为例,每3秒要确保处理完3000条快照数据,并完成相应的计算甚至下单。这样的场景,C和C++倒是够快了。所以行情软件比如大智慧、同花顺等客户端都是使用高效率的语言做的,但像客户端那样的开发量,绝大部分量化交易机构没能力也没必要去做吧。

python的速度足够对付一般的实时行情分析了。其底层是C实现的,加上很多第三方的C也是C实现,尽管其计算速度比不上原生C程序,但对我们来说是足够啦。

4 quant离职了,他的研究成果怎么办

Python是使用人群最多、社区最活跃的语言之一,也是最受quant欢迎的语言之一。如果你是老板,你能更容易地招聘到优秀人材,享受到python社区带来的便利。

附几个量化中常用的python库:

- Pandas:

天生为处理金融数据而开发的库。几乎所有的主流数据接口都支持Pandas。Python量化必备。

- Numpy:

科学计算包,向量和矩阵处理超级方便

- SciPy:

开源算法和数学工具包,与Matlab和Scilab等类似

- Matplotlib:

Python的数据画图包,用来绘制出各类丰富的图形和报表。

PS: Python也是机器学习领域被使用最多的语言之一。像tensorflow、scikit-learn、Theano等等对python都有极好的支持。

㈣ 我想学股票期货程序化交易编程,有谁知道程序化交易编程用哪种语言啊在网上看到C,VB,之类,要学哪种

。。。程序化交易。。现在都是期货比较多。
建议学习金字塔,功能比较强大。。
直接进他们公司的网站学习吧。。简单的编些程序都是比较简单。。

㈤ 我想做一个股票自动交易策略软件,请问哪种语言合适

进这个页面,然后下面Java SE Development Kit 1.4.2_19有windows平台的,32位和64位都有,记得上面选accept : )
希望采纳

㈥ 如何识别优秀的量化交易策略

1、交易时间。自己是否有时间进行日间交易?如果没有,可能需要考虑隔夜持仓的交易策略。2、编程水平。你只会Excel还是可以写Python、Java、C或者C++这些语言?如果只会Excel,可能做的交易策略会比用其他编程语言能做的交易策略简单一些。需要澄清的是:简单的未必是不好的。3、资金规模。小的资金规模能够交易的股票数量少,同时也会限制对冲策略的规模,这都会影响交易策略的选择。4、收益目标。你的收益目标需要综合考虑持有期和收益持续性之间的关系。

㈦ quant 用什么语言编程

Python是一门什么编程语言,它的显著优势和劣势分别是什么
Python编程环境的快速搭建(包括包管理(现在pip正在被标准化),编辑器,以及调试工具)
Python最被广泛认同的编码规范和最佳实践是什么 (e.g., ('a' + 'b') VS. ''.join(['a', 'b'], 这一点被很多初学者所忽略(“为什么不呢?反正我的代码运行正确了。”),但是如果学习者最初花多一点时间来回答这个问题(“虽然有多种选择,但是哪种选择在这个时候最合适”),或者说建立起来这样一种思考方式,你将很快的超越自己,成为别人眼中的专家。)

㈧ Python编程语言主要应用在什么领域

Python是一门简单、易学并且很有前途的编程语言,很多人都对Python感兴趣,但是当学完Python基础用法之后,又会产生迷茫,尤其是自学的人员,不知道接下来的Python学习方向,以及学完之后能干些什么?以下是Python十大应用领域!
1. WEB开发
Python拥有很多免费数据函数库、免费web网页模板系统、以及与web服务器进行交互的库,可以实现web开发,搭建web框架,目前比较有名气的Python
web框架为Django。从事该领域应从数据、组件、安全等多领域进行学习,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
2. 网络编程
网络编程是Python学习的另一方向,网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的“基石”。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
3. 爬虫开发
在爬虫领域,Python几乎是霸主地位,将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。从事该领域应学习爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
4. 云计算开发
Python是从事云计算工作需要掌握的一门编程语言,目前很火的云计算框架OpenStack就是由Python开发的,如果想要深入学习并进行二次开发,就需要具备Python的技能。
5. 人工智能
MASA和Google早期大量使用Python,为Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,尤其PyTorch之后,Python作为AI时代头牌语言的位置基本确定。
6. 自动化运维
Python是一门综合性的语言,能满足绝大部分自动化运维需求,前端和后端都可以做,从事该领域,应从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等层面进行学习。
7. 金融分析
金融分析包含金融知识和Python相关模块的学习,学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如“双均线”、“周规则交易”、“羊驼策略”、“Dual
Thrust 交易策略”等。
8. 科学运算
Python是一门很适合做科学计算的编程语言,97年开始,NASA就大量使用Python进行各种复杂的科学运算,随着NumPy、SciPy、Matplotlib、Enthought
librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。
9. 游戏开发
在网络游戏开发中,Python也有很多应用,相比于Lua or
C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10. 桌面软件
Python在图形界面开发上很强大,可以用tkinter/PyQT框架开发各种桌面软件!

㈨ 使用python做量化交易策略测试和回验,有哪些比较成熟一些的库

numpy
介绍:一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
scipy
介绍:SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包。它包括统计、优化、线性代数、傅里叶变换、信号和图像处理、常微分方程求解等等。
pandas
介绍:Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
quantdsl
介绍: quantdsl包是Quant DSL语法在Python中的一个实现。Quant DSL 是财务定量分析领域专用语言,也是对衍生工具进行建模的功能编程语言。Quant DSL封装了金融和交易中使用的模型(比如市场动态模型、最小二乘法、蒙特卡罗方法、货币的时间价值)。
statistics
介绍:python内建的统计库,该库提供用于计算数值数据的数学统计的功能。
PyQL
介绍: PyQL构建在Cython之上,并在QuantLib之上创建一个很浅的Pythonic层,是对QuantLib的一个包装,并利用Cython更好的性能。

㈩ 要成为一名程序化交易员需要学习哪一种编程语言呢

首先,有2个门槛,1个,你不用任何程序,手动交易,都能确保你稳定盈利,回内撤少于10%,一旦容某次超过10%就是失败,并且必须用自己的真金白银,实盘操作。并且持续连续交易超过10年!没一年亏损的。并且必须正收益,并且必须跑赢大盘,你就是及格的交易员。
2、程序化的,首先,你得所有理论的,实操的都及格,比如C C++ JAVA C# 汇编,并且要精通,比如数据库,MYSQL,SQLSERVER,ORACLE等,并且你不用电脑,可以在纸上默写出,能执行的程序,包含数据库的,你就及格了,还有,打代码也必须超过10年,否则也洗洗睡吧,因为金融的,很严谨,技术要求也超高,达不到,还是洗洗睡吧。
3、必须1个人能独立完成。多人的,没用。
4、必须处男或者处女,欲练神功,必须。。。

阅读全文

与交易策略编程语言相关的资料

热点内容
融资合同常见担保方式 浏览:445
广发证券杨子江 浏览:94
亲人之间出借股票账户 浏览:969
外汇指定银行2017 浏览:622
个人外汇管理办法解读 浏览:382
余额宝中钱如何购买理财产品 浏览:126
美元汇率黄金白银 浏览:542
易信交易平台 浏览:846
华商城短线交易怎么样 浏览:484
2017金银价格是多少钱 浏览:747
融资经理岗位职责 浏览:665
费用香港上市公司 浏览:197
股份份额转让 浏览:502
价格usd什么意思 浏览:656
去年买的低风险银行理财产品 浏览:174
哪个软件理财产品利息比较高 浏览:162
菏泽市宜信普惠金融投资担保公司 浏览:955
森源电气股份有限公司 浏览:704
消费金融公司运作模式 浏览:360
净值型理财产品就是基金吗 浏览:142