❶ 黄金分割点的由来,为什么
黄金分割律及其视觉传达设计的应用 江南大学 彭心勤PENG Xinqin摘 要:本文通过对黄金分割律的系统分析和研究,探讨了黄金分割的美感原理及些许设计法则,揭示了黄金分割律对于视觉传达设计的科学作用。 对黄金分割律在设计中的应用,多出现于建筑设计中,如米斯·凡·德洛(Ludwig Mies Van der Rohe,1886-1969)的别墅,勒·柯布西耶(Le Corbusier,1887-1965)的朗香教堂(La chapella de Ronchamp)等。在产品设计中,有米斯·凡·德洛的巴塞罗那椅(Barcelona Chair)、阿尔多·罗西(Aldo Rossi)设计的正圆锥壶等。而明确提出这一概念运用的是20世纪中期的法国建筑师勒·柯布西耶,他发现黄金比具有数列的性质。并将其与人体尺寸相结合,提出黄金基准尺方案,并视之为现代建筑美的尺度。而下文主要就黄金分割及其在视觉传达设计中应用做些许探究。一.黄金分割律的由来早在埃及人造金字塔时,就已潜在的应用了黄金分割律。公元前6世纪,古希腊数学家、哲学家毕达哥拉斯(Pythagoras,公元前580-500年)在一个偶然的机会被一铁匠铺悦耳的打铁声所吸引,结果发现了铁砧和铁锤的大小比例近乎于1∶0.618。回家后,让其学生分割一木棒,结果分割出一玄妙的比例:即用C点分割木棒AB,整段AB与长段BC之比,等于长段BC与短段AC之比,接着又发现,把AC放在BC之上,也得出同样的比例。后来后人发现,这一比例可无穷的分割下去,而他们的比例竟都近乎于1∶0.618。这可能就是人类明确发现“黄金分割”最早的记载。二.黄金分割的比例和构成黄金分割是指一条直线(或矩形)被分割成两个不同的部分,分割点(或线)将较大的部分与较小的部分分割成一定的比例(如图1 )。具体的比例公式是:AC/BC=AB/AC(AC为长边,BC为短边),其比值约为1.618∶1或1∶0.618。这个比例是如何计算出来的呢?假设AB=1,AC的长度为a,BC的长度即为1-a。如此便可得到:a2+a-1=0,计算出a的确切数值为0.61803398875…它还有以下两种形式及变化: Èý£®黄金分割律的美感探究首先,表现在它的形式美感上。19世纪后期,德国的心理学家古斯塔夫·费希纳(Gustav fechner)做了一个实验,其实验测量各种矩形人造物,其结果,他发现大部分人更喜爱边长比例接近于黄金分割律的矩形,这从一个侧面说明了黄金比例图形具有一符合人体标准的视觉愉悦性。其次,不乏生理与心理原因。1、生理原因科学研究表明,人的双眼视域是两个不同心的圆所围成的总区域,如若以一眼的正视时的中心作为一分割点去分割整个双眼视域的长,得出的正是一黄金分割的比例。所以,这个视域正是视觉感觉舒适的区域,这也可能正是黄金分割律美感的生理缘由。深层去追溯,可以用哲学家荣格所说的集体无意识的概念去解释和溯源:因为黄金分割律可能暗合人类的一种先天视觉识别能力的积淀。就是说,在大自然长期发展过程中,由于人类周围的环境,各种各样的动物和植物的形式和式样,他们都蕴含了这一形式比例的生物规律,这一规律长期作用着人类的视觉系统,因而大自然在潜移默化中业已决定了人类的这种“黄金”视觉愉悦性(例如,花和叶的器官是由于其螺旋上升式生长,从而保证了叶与叶之间不会重合,下面的叶片正好在从上面叶片间漏下阳光的空隙地方,这是采光面积最大的排列方式。也因而,沿对数螺旋按圆的黄金分割盘旋而生,是叶片排列的最优良选择。辐射对称的花及螺旋排列的果,它们在数学上也符合黄金分割的规律。这应该是一种进化论的“自然选择”吧。)。其实,人类其本身的大部分形体比例也是符合黄金分割律的比例分割的。古希腊哲学家普罗泰格拉曾说“人是万物的尺度”就隐含了人是自然界这种规律的造物。2、黄金比例美感的心理原因众所周知,平衡是大自然的一种规律和状态。在物理学中,据热力学推导出的一定律是:世间一切物理运动都可以被看作是趋向平衡的活动。同时,在心理学领域,格式塔心理学家们也得出:每一个心理活动领域都趋向于一种最简单、最平衡和最规则的组织形态①。所以,阿恩海姆推导弗洛伊德的观点,得出一结论:平衡是任何自我实现者所要达到的最终目标,也是他所要完成一切任务、解决一切问题的最终归宿。而黄金分割这一比例恰恰是达到人类视觉平衡和心理平衡的一最佳比例。这可能就是其能获美感的深层心理原因。ËÄ£®黄金分割律与设计在设计中,无论是古埃及的金字塔、古希腊的帕特农神殿、印度泰姬陵、法国巴黎圣母院还是中国故宫,中国的秦砖、汉瓦当都暗合黄金分割律。其实,现今我们周围的世界,小到火柴盒、信封、邮票,大到一些工业产品、建筑房屋,都有黄金分割在其中的应用和体现。在而今的视觉传达设计中,已有很多设计门类巧妙的应用了黄金分割,取得了很好的效果。例如一些校徽类标志设计的模型: 标志整体造型为圆形,由内外两个圆组成,内外圆比例为0.68:1,接近黄金分割比例,符合美学效果。再如一些名片设计: 都符合黄金分割的比例,其中第二个名片还进行了二度分割,具有很强的形式美感。同样,在包装设计中,也有体现: 在此牙膏盒包装的构图上,¡°黄金分割¡±线§和§¡¯把图案和¡°洁诺¡±字体一分为二;星形高光亮点正好处在§¡¯上;牙膏状的图案上的圆形犹如一个放大镜让你看透牙膏的原子结构¡°亮白粒子¡±;五分之一高度的灰色条放于底部,加强了图案整体的稳重。从视觉的舒适程度,黄金分割是其最佳位置。 在海报设计中,上述三个海报,分别是扬·奇科尔德的《构成主义》、《职业摄影》海报和马克思·比尔的《形式艺术》海报(较黑辅助线是后加上的黄金分割线)②。这两人都是平面设计的杰出作者,他们在海报作品中巧妙的运用黄金分割律,创造出了不同凡响的艺术风格。综上所述,正是由于黄金分割律有着深厚的哲理及生理、心理蕴意,且符合一种似乎天生的自然法则,所以得到了很多领域的应用。我们除挖掘出它意义的理论内涵外,更要不断开拓其应用领域。用它来指导设计,使其在视觉传达领域得到更为广阔的运用。当然,如若要确实的用好它,还要考虑到中国传统文化中"月满则亏,水满自溢"的道理,从而灵活、巧妙地应用它。以便使我们的设计在符合人的视觉审美心理的同时,更好地发挥黄金分割律在视觉传达设计中的作用
0.618是一个充满无穷魔力的神秘数字,最早是由2 500年前的毕达哥拉斯学派发现,后来被古希腊著名哲学家、美学家柏拉图誉为“黄金分割”,故0.618最初是因其比例在造型艺术上的悦目而得名的。15世纪末期,法兰西教会的传教士路卡·巴乔里发现:金字塔之所以能屹立数千年不倒,主要与其高度和其基座长度的比例有关,这个比例就是5∶8,与0.618极其接近。有感于这个神秘比值的奥妙及价值,他将黄金分割又称为“黄金比律”,后人简称“黄金比”、“黄金律”和“中外比”。
奇妙的黄金分割
日常生活中我们会看到,书籍、国旗、桌面、电视屏幕等物品都很协调,其主要原因就是它们的长宽比例符合黄金分割。另外我们还发现,世界上的许多建筑都可以找到黄金分割的影子。无论是古埃及的金字塔还是古希腊的帕特农神殿,不论是印度的泰姬陵还是法国的巴黎圣母院,尽管这些建筑风格各异,但在总体构图的设计方面,却都有意无意地运用了黄金分割法则。在动物和昆虫中也是这样,像犬、马、狮、虎、蝴蝶等看上去形体都很优美,其原因也是它们的比例大体上接近黄金分割。
在我们人类中也是一样,凡是看上去体态优美的人,其身体各部分的比例也与黄金比率相近。古希腊人认为,健康的人体是最完美的,而健康的人体中一定存在着各种优美、和谐的比例关系。晚会上的报幕员,一般都不会站在舞台的正中间,而是站在舞台一侧的0.618处,这样看起来,才会显得更加和谐、悦目。
黄金分割在人体及植物中的体现
黄金分割不但在艺术和美学的表现形式上让人赏心悦目,在我们人体和其他许多生物上也处处体现。人体从头顶到肚脐部位与人体之比接近0.618;肚脐到咽喉与肚脐到头顶之比也接近0.618;从脑前向后延伸至下顶叶处,是大脑处理数学思维、三维形象和空间关系的关键部位,而此处也正好接近0.618;臀宽与躯干的长度之比、上肢与下肢的长度之比、下肢与全身的长度之比、肩关节与肘关节的长度之比、肘关节与腕关节的长度之比、膝关节与踝关节的长度之比以及心脏与胸腔之比、眼睛与脸部之比,也都奇妙地遵循着神秘的黄金比律。
又有人发现,人体的很多重要穴位以及健康、疾病、生长发育等都与黄金分割有关,就连医学和养生也与0.618有着千丝万缕的联系。如人体头顶至后脑的0.618处是百会穴;下颌到头顶的0.618处是天目穴;手指到手腕的0.618处是劳宫穴;脚后跟到脚趾的0.618处是涌泉穴;从脚底到头顶的0.618处是丹田穴……又比如,人的正常体温是37℃左右,但在外界温度是23℃时会感到最舒适。在这个环境中,人体的生理功能、生活节奏及新陈代谢水平也都处于最佳状态,而23与37的比率也接近0.618。组成人体最多的物质是水,它占成年人体重的60%~70%,其比值与黄金分割率十分相似。而最神秘的巧合是我们生命中的DNA了,它的每个双螺旋结构中都包含有黄金分割,因为每个螺旋结构都是由长34埃与宽21埃之比组成,而它们的比率为0.6190476,非常接近黄金分割比的0.6180339。
在许多植物中,它们所生长的形状一般都接近黄金分割的比例。在植物的茎干上,两个相邻的叶片夹角一般都是137°30′,而这个角度恰好又是圆的黄金分割比。研究发现,这种夹角对植物的通风和采光效果最佳。另外在向日葵上,也包含有许多黄金比例的结构和原理。在向日葵花盘上的瓜籽布局通常为左21条和右13条的两种螺旋,而13与21的比值正好与黄金分割的比值0.618非常接近。通过计算得知,向日葵籽的螺旋排列可在最小的面积上得到最大的数量。
❷ 最符合黄金分割的动物是什么呀
体型的标准尺度,以古希腊的艺术珍品「金星女神」为模特儿,具体标准是以肚脐眼为界,向上到头顶的长度是整个身长的0.382倍;向下到脚心的长度是整个身长的0.618倍。
人体黄金分割因素包括4个方面,即18个“黄金点”,如脐为头顶至脚底之分割点、喉结为头顶至脐分割点、眉间点为发缘点至颏下的分割点等;15个“黄金矩形”,如躯干轮廓、头部轮廓、面部轮廓、口唇轮廓等;6个“黄金指数”,如鼻唇指数是指鼻翼宽度与口裂长之比、唇目指数是指口裂长度与两眼外眦间距之比、唇高指数是指面部中线上下唇红高度之比等;3个“黄金三角”,如外鼻正面观三角、外鼻侧面观三角、鼻根点至两侧口角点组成的三角等。除此之外,近年国内学者陆续发现有关的“黄金分割”数据,如前牙的长宽比、眉间距与内眦间距之比等,均接近“黄金分割”的比例关系。专家们认为,这些数据的陆续发现不仅表现人体是世界上最美的物体,而且为美容医学的发展,为临床进行人体美和容貌美的创造和修复提供了科学的依据。古希腊人以为,美是神的语言。他们找到了一条数学证据,宣称黄金分割是上帝的尺寸。
在夏季,人们格外留恋春天的感觉,这种体验恐伯每个人都有,也不足为奇。可是你知道吗?人在春季感到舒畅,那是因为这时的环境温度正好在22至24摄氏度之间,而这种气温与人的正常体温37摄氏度正呈现微妙之处:人的正常体温37摄氏度与0.618的乘积为22.8摄氏度,人在这一环境温度中,机体的新陈代谢、生理活动均处于最佳状态。
❸ 动物身上的比什么物体也是黄金比的最好详
人是自然界长期发展的产物,人体美在自然美中具有最强的完整性。英国大诗人莎士比亚在《哈姆雷特》中赞颂道:“人类是一件多么了不得的杰作!……宇宙的精华、万物的灵长”。其实,莎士比亚也许不知道,人体相关各部分之间是符合黄金分割率的,肚脐是黄金分割线的黄金点。在躯干部分,乳房位置的上下长度比;咽喉至头顶和至肚脐之比;膝盖至脚后跟和至肚脐之比等,都是黄金分割数0.618的近似数。如果人体上述部分比例均符合黄金律的话,就显得协调匀称。古希腊断臂维纳斯、雅典娜女神和“海姑娘”阿曼达,其体型结构比例完全符合黄金律,美妙绝伦。
科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。在建筑造型上,人们在高塔的黄金分割点处建楼阁或设计,便能使平直单调的塔身变得丰富多彩;而在摩天大楼的黄金分割处布置腰线或装饰物,则可使整个楼群显得雄伟雅致。古代雅典的巴特农神殿,当今世界最高建筑之一的加拿大多伦多电视塔,举世闻名的法国巴黎埃菲尔铁塔,都是根据黄金分割的原则来建造的。
在日常生活中,最和谐悦目的矩形,如电视屏幕、写字台面、书籍、衣服、门窗等,其短边与长边之比为0.618,你会因此比例协调而赏心悦目。甚至连火柴盒、国旗的长宽比例设计,都恪守0.618比值。在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。
❹ 什么叫黄金分割
黄金分割(golden section)是一种最能引起美感的分割比例。通过黄金分割物体的较大部分与整体的比例0.618:1。 黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其功能性与美观性。
❺ 黄金比的动物有哪些
海豚(眼睛,鱼鳍和尾巴都满足黄金分割)、海星、海胆、蚂蚁以及蜜蜂。
著名的斐波那契数在过去的几个世纪中让数学家、艺术家、设计者以及科学家们所痴迷。斐波那契数列还有另外一个著名的名称即黄金比例。
即使我们的身体也存在黄金比例的规律。例如从人的肚脐往脚的距离和往头的距离比例刚好就是黄金比例。
❻ 跪求:动物身上的黄金分割,越多越好,PPT资料啊..谢谢了
将世界上任何一个蜂巢里的雄蜂和雌蜂分开数,你将得到一个相同的比率PHI。鹦鹉螺身上每圈罗纹的直径与相邻罗纹直径之比是PHI。昆虫身上的分节竟然也符合黄金分割。
而禽兽等高级温动物的体温介乎37-39℃,这一温度正是水的液态范围0--100℃,两个黄金点(0.618)之一,即38℃左右。那么,动物体温为什么不在另一个黄金点62℃左右呢?这是因为,自从宇宙大爆炸以来,伴随着整体的增熵过程还有局部的减熵过程。太阳的形成、生物的进化,都是一个减熵过程,这一过程包括着生物体温从低温向高温进化。因此,生物首先进化到了第一个黄金38℃,这是自然的发展过程。
动物界,形体优美的动物形体,如马,骡、狮、虎、豹、犬等,凡看上去健美的,其身体部分长与宽的比例也大体上接近与黄金分割如:蝴蝶身长与双翅展开后的长度之比也接近0.618。1.618是0.618的倒数,太神奇了!
❼ 大自然中的黄金比有哪些
著名的斐波那契数在过去的几个世纪中让数学家、艺术家、设计者以及科学家们所痴迷。斐波那契数列还有另外一个著名的名称即黄金比例。它在自然界中的唯一性和令人震惊的功能表明它是我们宇宙的一个非常基本的特性。
先让我们回顾一下黄金比例和斐波那契数列。斐波那契数列是以0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…这样开始的序列。序列中的每一个数字是前两个数字的和。这个规律非常简单,但是这个简单的规律却是我们宇宙中各种系统的潜在构造规律。下面我们就列举了10个这样的例子:
1、花瓣数
一朵花上的花瓣数严格地遵循着斐波那契数列。著名的例子包括百合花,它有3个花瓣;金凤花有5个花瓣;菊苣有21个花瓣;雏菊有34个花瓣,……。这个规律似乎是达尔文自然选择的结果。例如每个花瓣严格按照0.618034的黄金比例来放置,以保证花瓣最大限度地暴露在阳光下以及一些其他因素。
2、种子头部
花的种子也按照斐波那契数列来排布的。一个典型的形状是,种子由中心产生,然后向外迁移来填充所有的空间。向日葵给这种螺旋式的模式提供了一个很好的例子。在一些情况下,种子头也可以紧密排布,形成一个很大的数字,例如可以高达144或者更多。当计算这些螺旋线上的数字的时候,它们趋向于满足斐波那契数列。
3、松果
相似的,松果上的种子荚也是按照螺旋线的形式排列的。每个锥形由一对螺旋线组成,这两条螺旋线向着相反的方向螺旋。每一层的数目总是满足一对连续的斐波那契数列的。
4、树枝
斐波那契数列数列也可以在树枝的形成和分叉上看到。一个树的主干会一直生长,直到它产生一个新的分支,这样就形成了两个生长点。随后这个新的枝干会继续生长并形成两个新的分支,而之前的那个枝干保持正常生长。这个规律会一直持续保持。如果从水平线的角度来看,生长点的个数会满足斐波那契数列。
5、贝壳
黄金比例矩形提供了一个非常神奇的特性。让一个矩形的长边作为新矩形的短边,并且保证矩形的两条边的比例a/b总是满足黄金比例。这样各个矩形的半圆线连在一起会形成一个螺旋线。这条线也称为对数螺旋线,这种曲线在自然界中大量存在。
蜗牛的外壳和鹦鹉螺的外壳都满足这样的曲线,我们内耳的耳蜗也满足这样的曲线。有些山羊的角也会形成这样的曲线。一些蜘蛛网也会形成这样的曲线。
6、星系螺旋
毫不奇怪,星系的螺旋线也满足斐波那契数列的规律。银河系有几个不同的旋臂,每个悬臂都是大约12度的对数曲线。除此之外,还有一个神奇的现象是,螺旋星系似乎并不遵循牛顿力学规律。1925年,天文学家意识到因为星系中不同地方的角速度不同,当星系旋转的时候悬臂因该会形成一个弯曲的形状。其后果就是,随着一些旋转,螺旋的旋臂会完全绕在星系的周围。但是,实际上它们并没有。这个也被称为缠绕问题。因此,似乎旋臂的各个部分的旋转速度并不相同,从而才让这样的黄金比例曲线形状得以保存。
7、飓风
飓风的云图形状也满足黄金比例对数曲线。
8、脸部形状
脸部,不管是人类的还是非人类的,都存在着黄金比例现象。
9、动物的身体
即使我们的身体也存在黄金比例的规律。例如从人的肚脐往脚的距离和往头的距离比例刚好就是黄金比例。
动物的身体也存在着类似的趋势,包括海豚(眼睛,鱼鳍和尾巴都满足黄金分割)、海星、海胆、蚂蚁以及蜜蜂。
10、生殖动力学
说到蜜蜂,它们还在其他方面满足斐波那契数列。最有意思的例子是,如果用一个蜂群中的雌蜂数量比上雄蜂的数量,这个比例会非常接近1.618。此外蜜蜂的家族树也满足类似的规律。一个雄蜂对应一个先辈(一个雌蜂),而雌蜂对应两个先辈(一个雌蜂一个雄蜂)。那么形成家族树的时候,一个雄蜂就会有2,3,5和8个祖先。相似的雌蜂就会有2,3,5,8,13个祖先……刚好满足斐波那契数列。
❽ 自然界中普遍存在黄金分割,宇宙真的是被设计的吗
黄金分割不但在数学中扮演着神奇的角色,而且在.美学、艺术、音乐、建筑、生物、自然等领域都可以找到它的踪迹。在日常生活中我们会看到,像书籍、国旗、桌面、电视屏幕等物品都很协调,其主要原因就是它们的长宽比例符合黄金分割。另外我们还发现,世界上最著名的许多建筑,其比例也都可以找到这个精灵的存在。无论是古埃及的金字塔和古希腊的帕特农神殿,还是印度的泰姬陵和法国的巴黎圣母院,尽管这些建筑风格各异,但在总体构图的设计方面,却都有意无意地运用了黄金分割法则。在动物和昆虫中也是这样,像犬、马、狮、虎、蝴蝶等看上去形体都很优美,其原因也是它们的比例大体上接近黄金分割。
1.6180339。难怪有人猜测说:黄金分割是否就是宇宙中的遗传密码DNA呢?我们的银河系,是由两千亿颗恒星及行星组成。从概率角度讲,具备生物生存条件的行星肯定还有很多,但能够有像人类智慧的高等生物毕竟还是少数,至少目前我们还没有确凿的发现证据。那么我们是否可以这样认为,在银河系黄金分割带上的某些行星,是可以诞生出高等动物几率较大的生命摇篮呢?
我们知道,爱因斯坦是20世纪最伟大的物理学家。在他的后半生,爱因斯坦极力想寻找到一个能在自然界解决很多问题,并是宇宙间普遍规律的最简算式。遗憾的是爱因斯坦耗尽了心血,但直到他逝世也没有找到。那么我们今天在这里猜想:黄金分割律,是否就是爱因斯坦想要寻找的最简算式呢?
❾ 鹦鹉螺壳的曲线和黄金分割曲线为什么完美重合
诺第留斯是诺第留斯科海生软体动物的总称,这是头足类动物,有珍珠状的卷曲外壳,外壳长度一般不超过20厘米。壳体由多个腔室组成,每个腔室之间用隔板隔开;两腮;63-94手腕,没有吸盘;眼睛结构简单,无晶状体;没有墨囊。壳薄而薄,呈螺旋状螺旋状,壳表面呈白色或乳白色,生长纹由壳脐辐射而来,光滑致密,多为红褐色。整个螺旋壳光滑如圆盘,形状像鹦鹉的嘴,因此得名“鹦鹉螺”。菊石生活在600米深的海洋表面,可以适应不同深度的压力。鹦鹉螺是一种食肉动物,主要捕食小鱼、软体动物、底栖甲壳动物等。
以上就是小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,您的点赞是对我最大的帮助,谢谢大家了。。
❿ 黄金分割的例子是什么
画家们发现,按0.618:1来设计的比例,画出的画最优美,在达·芬奇的作品《维特鲁威人》、《蒙娜丽莎》、还有《最后的晚餐》中都运用了黄金分割。
而现今的女性,腰身以下的长度平均只占身高的0.58,因此古希腊的著名雕像断臂维纳斯及太阳神阿波罗都通过故意延长双腿,使之与身高的比值为0.618。
建筑师们对数字0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,希腊雅典的巴特农神庙,都有黄金分割的足迹。
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,而且呈现于不少动物和植物的外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,展现其实用性与美观性。
(10)动物黄金分割扩展阅读:
历史
黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,根据目前的文献探讨,我们可以说,黄金比例的发现和如何演进至今仍然是一个谜。
但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正5边形和正10边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现无理数。
他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之比等于全长与较长的一段之比;
它们的比例大约是1.618:1,知名的费氏数列也体现了这个数学原则,按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著(即中末比)。
中世纪后,黄金分割被披上神秘的外衣,意大利数学家卢卡·帕乔利称中末比为神圣比例,并专门为此著书立说。
德国天文学家约翰内斯·开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家马丁·欧姆所写的《基本纯数学》第2版注释中写到有关黄金比例的解释:“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”。
而在1875年出版的《大英网络全书》的第9版中,苏利有提到:“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。20世纪时美国数学家马克·巴尔给它个名字叫phi。
黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了它今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家杰克·基弗于1953年首先提出的,70年代在中国推广。