导航:首页 > 外汇期货 > 贵金属铅阳极泥炉况分析

贵金属铅阳极泥炉况分析

发布时间:2021-03-18 17:51:12

1. 任务贵金属分析方法的选择

任务描述

贵金属元素由于其性质的特殊性,在样品溶解、分离富集等方面与一般元素有很大的不同之处。通过本次任务的学习,加深对贵金属元素性质的了解,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况正确选择分离和富集方法,学会基于被测试样中贵金属元素含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。

任务分析

一、贵金属在地壳中的分布、赋存状态及其矿石的分类

贵金属元素是指金、银和铂族(铑、钌、钯、锇、铱、铂)共8 种元素,在元素周期表中位于第五、六周期的第Ⅷ族和第IB副族中。由于镧系收缩使得第二过渡元素(钌、铑、钯、银)与第三过渡元素(锇、铱、铂、金)的化学性质相差很小,因此贵金属元素的化学性质十分相近。

铂族元按其密度不同,分为轻重两族。钌、铑、钯为轻族;锇、铱、铂为重族。

金在自然界大都以自然金形式存在,也能和银、铜和铂族元素形成天然合金。根据最新研究成果,金的地壳丰度值仅为1 ng/g。金矿床中伴生的有用矿产很多。在脉金矿或其他原生金矿床中,常伴生有银、铜、铅、锌、锑、铋和钇等;在砂金矿床中,常伴生有金红石、钛铁矿、白钨矿、独居石和刚玉等矿物。此外,在有色金属矿床中,也常常伴生金。金的边界品位一般为1 g/t。一般自然金里的金含量大于80%,还有少量的铜、铋、银、铂、锑等元素。

银在地壳中的平均含量为1×10-7,在自然界多以硫化物形式存在,单独存在的辉银矿(Ag2S)很少遇见,而且主要伴生在铜矿、铅锌矿、铜铅锌矿等多金属硫化物矿床和金矿床中。在开采和提炼铜、铅、锌、镍和金主要组分时,可顺便回收银。一般含银品位达到5~10 g/t即有工业价值。

铂族元素在自然界分布量很低,铂在地壳中的平均丰度仅为5×10-9,钯为5×10-8。它们和铁、钴、镍在周期表上同属第Ⅷ族,因此也与铁、钴、镍一样,具有亲硫性。铂族元素常与铁元素共生,它们主要富集在与超基性岩和基性岩有关的铜镍矿床、铬铁矿床和砂矿床内。铜镍矿床中所含铂族元素以铂、钯为主,其次是铑、钌、锇、铱。铬铁矿中所含铂族元素以锇、钌、铱为主。铂族元素之间,以及它们与铁、钴、镍、铜、金、银、汞、锡、铅等元素之间能构成金属互化物。在自然界存在自然铂和自然钯。自然铂含铂量为84%~98%,其余为铁,及少量钯、铱、镍、铜等。自然钯含钯量为86.2%~100%,同时含有少量铂、铱、铑等。自然钌很少见,我国广东省发现的自然钌中含有91.1%~100% 的钌。铂族元素还可以与非金属性较强的第Ⅵ主族元素氧、硫、硒、碲及第V主族元素砷、锑、铋等组成不同类型的化合物。目前已知的铂族元素矿物有120多种。在一些普通金属矿物(如黄铜矿、磁黄铁矿、镍黄铁矿、黄铁矿、铬铁矿等)以及普通非金属矿物(如橄榄石、蛇纹石、透辉石等)中也可能含有微量铂族元素。

铂族元素的共同特性是具有优良的抗腐蚀性、稳定的热电性、高的抗电火花蚀耗性、高温抗氧化性能以及良好催化作用,故在工业上应用很广泛,特别是在国防、化工、石油精炼、电子工业上不可缺少的重要原料。

二、贵金属的分析化学性质

(一)化学性质

1.金

金具有很高的化学稳定性,即使在高温条件下也不与氧发生化学作用,这大概就是在自然界中能够以自然金甚至是以微小金颗粒存在的重要原因。金与单一的盐酸、硫酸、硝酸和强碱均不发生化学反应。金能够溶解在盐酸和硝酸的混合酸中,其中在王水中的溶解速率是最快的。用于分析化学中的金标准溶液通常就是以王水溶解纯金来制备,但需要用盐酸反复蒸发除去多余的硝酸或氮氧化合物。在有氧化剂存在的盐酸中,如 H2O2、KMnO4、KClO3、KBrO3、KNO3和溴水等,金也能够很好被溶解,这主要是由于盐酸与氧化剂相互作用产生新生态的氯气同金发生反应所致。

2.银

银有较高的化学稳定性,常温下不与氧发生化学作用,在自然界同样能够以元素形态存在。当与其他元素发生化学反应时,通常形成正一价的银化合物。在某些条件下也可生成正二价化合物,例如AgO和AgF2,但这些化合物不稳定。

金属银易溶于硝酸生成硝酸银,也易溶于热的浓硫酸生成硫酸银,而不溶于冷的稀硫酸中。银在盐酸和王水中并不会很快溶解,原因在于初始反应生成的Ag-以AgCl沉淀沉积在金属表面而形成一层灰黑色的保护膜,阻止了银的进一步溶解。但是如果在浓盐酸中加入少量的硝酸,银的溶解是比较快的。这是因为形成的 AgCl 又生成可溶性的[AgCl2-配离子。这一反应对含银的贵金属合金材料试样的溶解是很有用的。银与硫接触时,会生成黑色硫化银;与游离卤作用生成相应的卤化物。银饰品在空气中长久放置或佩戴后失去光泽常常与其表面上硫化物及其氯化物的形成有关。在有氧存在时,银溶解于碱金属氰化物而生成[Ag(CN)2-配离子。银在氧化剂参与下,如有Fe3+时也能溶于酸性硫脲溶液而形成复盐。

3.铂族金属

铂族金属在常温条件下是十分稳定的,不被空气腐蚀,也不易与单一酸、碱和很多活泼的非金属元素反应。但是在确定的条件下,它们可溶于酸,并同碱、氧和氯气相互作用。铂族金属的反应活性在很大程度上依赖于它们的分散性以及同其他元素,即合金化的元素形成中间金属化合物的能力。

就溶解能力而言,铂族金属粉末较海绵状的易于溶解,而块状金属的溶解是非常缓慢的。与无机酸的反应,除钯外,铂族金属既不溶于盐酸也不溶于硝酸。钯与硝酸反应生成Pd(NO32。海绵锇粉与浓硝酸在加热条件下反应生成易挥发的OsO4。钯、海绵铑与浓硫酸反应,生成相应的PdSO4、Rh2(SO43。锇与热的浓硫酸反应生成OsO4或OsO2。铂、铱、钌不与硫酸反应。王水是溶解铂、钯的最好溶剂。但王水不能溶解铑、铱、锇和钌,只有当它们为高分散的粉末和加热条件下可部分溶解。在有氧化剂存在的盐酸溶液中(如H2O2、Cl2等)于封管的压力条件下,所有的铂族金属都能被很好地溶解。

通常,碱溶液对铂族金属没有腐蚀作用,但当加入氧化剂时则有较强的相互作用。如OsO4就能够在碱溶液中用氯酸盐氧化金属锇来获得。在氧化剂存在条件下,粉末状铂族金属与碱高温熔融,反应产物可溶于水(对于Os和Ru)、盐酸、溴酸和盐酸与硝酸的混合物中,由此可将难溶的铂族金属转化为可溶性盐类。高温熔融时,常用的混合熔剂有:NaOH+NaNO3(或NaClO3)、K2CO3+KNO3、BaO2+BaNO3、NaOH+Na2O2和Na2O2等。利用在硝酸盐存在条件下的NaOH或KOH的熔融、利用Na2O2的熔融以及利用BaO2的高温烧结方法通常被认为是将铂族金属如铑、铱、锇、钌转化成可溶性化合物的方便途径。

在碱金属氯化物存在条件下,铂族金属的氯化作用同样是将其转化成可溶性化合物的最有效途径之一。

(二)贵金属分析中常用的化合物和配合物

1.贵金属的卤化物和卤配合物

贵金属的卤化物或卤配合物是贵金属分析中最重要的一类化合物,尤其是它们的氯化物或氯配合物。因为贵金属分析中大多数标准溶液的制备主要来自这些物种;铂族金属与游离氯反应,即氯化作用,被广泛用于分解这些金属;更重要的是在铂族金属的整个分析化学中几乎都是基于在卤配合物水溶液中所发生的反应,包括分离和测定它们的方法。

铂族金属配合物种类繁多,能与其配位的除卤素外,还有含O、S、N、P、C、As等配位基团,常见的有

NH3、NO、NO2、PH3、PF3、PCl3、PBr3、AsCl3、CO、CN-和多种含S、N、P的有机基团。贵金属的简单化合物在分析上的重要性远不如其配合物。对于金或银虽然形成某些稳定配合物,但无论其种类或数量都无法与铂族金属相比拟。

2.贵金属氧化物

金、银的氧化物在分析上并不重要。金的氧化物有Au2O3、Au2O,Au2O很不稳定,与水接触分解为Au2O3和Au。用硝酸汞、乙酸盐、酒石酸盐等还原剂还原Au(Ⅲ)可得到Au2O。Au(Ⅲ)与NaOH作用时,生成Au(OH)3沉淀。通常,Au(OH)3以胶体形态存在,所形成的胶粒直径一般为80~200 nm。

向银溶液中小心加入氨溶液时可形成白色的氢氧化银。当以碱作用时则有棕色的氧化银析出。氧化银呈碱性,能微溶于碱并生成[Ag(OH )2-;在300℃条件下分解为 Ag和O2

铂族金属及其化合物在空气中灼烧可形成各种组分的氧化物。由于许多氧化物不稳定,或者稳定的温度范围比较窄,或者某些氧化物具有挥发性,因此在用某些分析方法测定时要十分注意。例如,一些采用重量法的测定需在保护气氛中灼烧成金属后称重。Os(Ⅷ)、Ru(Ⅷ)的氧化物易挥发,这也是与其他贵金属分离的最好方法。铂族金属对氧的亲和力顺序依次为:Pt<Pd<Ir<Ru<Os。铂的亲和力最差,但粉末状的铂能很好与氧结合。贵金属的氧化物在溶液中多呈水合氧化物形式存在。

3.贵金属的硫化物

形成硫化物是贵金属元素的共性,但难易程度不同。其中IrS生成较难,而PdS、AgS较容易形成。贵金属硫化物均不溶于水,其溶解度按下列顺序依次减小:Ir2S3、Rh2S3、PtS2、RuS2、OsS2、PdS、Au2S3、Ag2S。在贵金属的氯化物或氯配合物(银为硝酸盐)溶液中,通入H2S气体或加入Na2S溶液可得到相应的硫化物沉淀。

4.贵金属的硝酸盐和亚硝酸盐化合物或配合物

在贵金属的硝酸盐中,AgNO3是最重要的化合物。分析中所用的银标准溶液都是以AgNO3为初始基准材料配制的。其他贵金属的硝酸盐及硝基配合物不稳定,易水解,在分析中较少应用。铂族金属的亚硝基配合物是一类十分重要的配合物。铂族金属的氯配合物与NaNO2在加热条件下反应,生成相应的亚硝基配合物。这些配合物很稳定,在pH 8~10的条件下煮沸也不会发生水解。利用这种性质可进行贵金属与贱金属的分离。

三、贵金属矿石矿物的取样和制样

含有贵金属元素的样品在分析之前必须具备两个条件:①样品应是均匀的;②样品应具有代表性。否则,无论分析方法的准确度如何高或分析人员的操作如何认真,获得的分析结果往往是毫无意义的。此外,随着科学技术的发展,贵金属资源被广泛应用于各工业部门和技术领域,由于贵金属资源逐渐减少,供需矛盾日渐突出,其价格日趋昂贵,因此对分析结果准确性的要求比其他金属要高。

贵金属矿石矿物的取样、加工是为了得到具有较好代表性和均匀性的样品,使所测试样品中贵金属的含量能够较真实地反映原矿的情况,避免取样带来的误差。贵金属在自然界中的赋存状态很复杂,又由于贵金属元素的含量较低,故分析试样的取样量必须满足两个因素:①分析要求的精度;②试样的均匀程度,即取出的少量试样中待测元素的平均含量要与整个分析试样中的平均含量一致。实际上贵金属元素在矿石中的分布并不均匀,往往集中在少数矿物颗粒中,要达到取出的试样与总试样完全一致的要求是很难做到的。因此,只能在满足所要求的分析误差范围内进行取样,增加取样量,分析误差可能会减小。试样中贵金属矿物的破碎粒度与取样量有很大关系,粒度愈大,试样愈不均匀,取样量也应愈大,因此加工矿物试样时应尽可能磨细。为了达到一定的测量精度,除满足上述取样量的条件外,还应满足测定方法的灵敏度。

一般的矿样,可按常规方法取样、制样。金多以自然金的形式存在于矿石矿物中,它的粒度变化较大,大的可达千克以上,而微小颗粒甚至在显微镜下都难以分辨。金的延展性很好,它的破碎速度比脉石的破碎速度慢,因此对未过筛的和残留在筛缝中的样品部分绝对不能弃之,此部分大多含有自然金。金矿石的取样与加工一般按切乔特经验公式进行。对于比较均匀的样品,K取值为0.05,一般金矿石样品,K取值为0.6~1.5。

对于较难加工的金矿石,在棒磨之前加一次盘磨碎样并磨至0.154mm,因为棒磨机的作用是用钢棒冲击和挤压岩石再磨细金粒,能满足一般金粒较细的试样所需的破碎粒度。含有较粗金粒的试样,用棒磨机只能使金粒压成片状或带状,达不到破碎的目的。而盘磨机是利用搓压的作用力使石英等硬度较大的物料搓压金粒来达到破碎的目的。

在金矿样的加工过程中,应注意以下几个方面:

(1)如果矿样量在1kg以下,碎样时应磨至200目。一半送分析用,一半作为副样。如果矿样量在1 kg以上,按加工流程进行破碎,作基本分析的样品重量不应少于500~600 g。

(2)若样品中含有明金时,应增设80目过筛和筛上收金的过程。

(3)对于1∶20万区域化探水系沉淀物样品,应将原分析样混匀后分取40g,用盘磨粉碎至200目,混匀后作为金的测定样。

(4)在过筛和缩分过程中,任何时间都不能弃去筛上物和损失样品。

(5)所使用的各种设备每加工完一个样品后必须彻底清扫干净,并认真检查在缝隙等处有无金粒残留。

(6)矿样经棒磨机粉碎至200 目后,送分析之前必须再进行混匀,以防止因金的密度大在放置时间过久或运送过程中金下沉而导致样品不均匀。

由于金在矿石中的不均匀性,要制取有代表性、供分析用的矿样,应尽可能地增大矿石取样量。在磨样过程中,对分离出粗粒的金应分别处理。其他贵金属矿样的取样与加工要比金矿石的容易。

为了获得准确的分析结果,贵金属试样在分析之前,取样与样品的加工,试样的分解将是整个分析工作中的重要环节。另一方面,由于在大多数的分析方法中,获得的分析结果常常是通过与已知的标准物质的含量,包括标准溶液和标准样品进行比较获得的,因此,准确的分析结果同样也依赖于贵金属标准溶液的准确制备。

四、贵金属矿样的样品处理技术

贵金属矿石矿物的分解有其特殊性,是分析化学中的难题之一。因为多数贵金属具有很强的抗酸、碱腐蚀的特点,常用的无机溶剂和分解技术难以分解。

含铑、铱和钌等试样,在常温、常压,甚至较高温度、压力下用王水也难以分解。

砂铂矿多由超基性岩体中的铬-铂矿风化次生而成,其密度及硬度极高、化学惰性极强,在高温、高压条件下溶解也较慢。

锇铱矿是以锇和铱为主的天然合金,晶格类型的差别较大(铱为等轴晶系,锇为六方晶系)。含锇高时称为铱锇矿,呈钢灰色至亮青铜色;含铱高时称为锇铱矿,呈明亮锡白色。它们的密度都很大,性脆且硬,含铱、钌高时磁性均较强,锇高时相反。化学性质也都很稳定,于王水中长时间煮沸难以被分解。

为了分解这些难溶物料,需要引入一些特殊的技术,如焙烧预处理技术、碱熔融技术、加压酸消解技术等。

(一)焙烧预处理方法

贵金属在矿石中除以自然金、自然铂等形式存在外,还以各种金属互化物形式存在,并常伴生在硫化铜镍矿和其他硫化矿中。用王水分解此类矿样时,由于硫的氧化不完全,易产生元素硫,并吸附金、铂、钯等,使测定结果偏低,尤其对金的吸附严重,故需要先进行焙烧处理,使硫氧化为SO2而挥发。焙烧温度的控制是很重要的,温度过低,分解不完全;温度过高,会烧结成块,影响分析测定。常用的焙烧温度为600~700℃,焙烧时间与试样量和矿石种类有关,一般为1~2h。不同硫化矿的焙烧分解情况不同,其中黄铁矿最易分解,其次是黄铜矿,最难分解的是方铅矿。以下是几种贵金属矿石的焙烧处理方法。

(1)含砷金矿的焙烧。先将矿石置于高温炉中,升温至400℃恒温2h,使大部分砷分解、挥发,继续升温至650℃,使硫和剩余的少量砷完全挥发。于矿石中加入NH4NO3、Mg(NO32等助燃剂,可提高焙烧效率,缩短焙烧时间。如果金矿中砷的含量在0.2% 以上,且砷含量比金含量高800倍的条件下焙烧时,会生成砷和金的一种易挥发的低沸点化合物而使金损失,此时的焙烧温度应控制在650℃以下。当金矿石中硅含量较高时,加入一定量NH4HF2可分解SiO2

(2)含银硫化矿的焙烧。先将矿石置于高温炉中,升温至650℃,恒温2h,使硫完全挥发。当矿石中硅含量较高时,即使加入NH4HF2,由于焙烧过程中生成难溶的硅酸银,使测定结果严重偏低。为此,用酸分解焙烧试样时,加入HF以分解硅酸银,可获得满意的结果。

(3)含铂族元素硫化矿的焙烧。与含金硫化矿的焙烧方法相同。

(4)含锇硫化矿的焙烧。试样进行焙烧时,易氧化为OsO4形式挥发损失,于焙烧炉中通入氢气,硫以H2S形式挥发;或按10∶1∶1∶1比例将矿石、NH4Cl、(NH42CO3、炭粉混合后焙烧,可加速硫的氧化,对锇起保护作用。

(二)酸分解法

贵金属物料的酸分解法是最常用的方法,操作简便,不需特殊设备。常用的溶剂是王水,它所产生的新生态氯具有极强的氧化能力,是溶解金矿和某些铂族矿石的有效试剂。溶解金时可在室温下浸泡,加热使溶解加速。溶解铂、钯时,需用浓王水并加热。此外,分解金矿的试剂很多,如HCl-H2O2、HCl-KClO3、HCl-Br2等。被硅酸盐包裹的矿物,应在王水中加少量HF或其他氟化物分解硅酸盐。酸分解方法不能用于含铑、铱矿石的分解,此类矿石只有在高温、高压的特定条件下强化溶解才能完全溶解。

(三)碱熔法

固体试剂与试样在高温条件下熔融反应可达到分解的目的。最常用的是过氧化钠熔融法,几乎可以分解所有含贵金属的矿石,但对粗颗粒的锇铱矿很难分解完全,常需要用合金碎化后再碱熔才能分解完全。本法的缺点是引入了大量无机盐,对坩埚腐蚀严重,又带入了大量铁、镍。使用镍坩埚还能带入微量贵金属元素。此法多用于无机酸难以分解的矿石。

五、贵金属元素的分离和富集方法

贵金属元素在岩石矿物中的含量较低,因此,在测定前对其进行分离富集往往是必要且关键的一步。贵金属元素的分离和富集有两种方法;一种是干法分离和富集——火法试金;一种是湿法分离和富集——将样品先转为溶液,然后采用沉淀、吸附、离子交换、萃取、色层等方法进行分离富集贵金属与贱金属分离,主要有共沉淀分离法、溶剂萃取法、离子交换分离法、活性炭分离富集法、泡沫塑料富集法及液膜分离富集法等。目前应用最广泛的是火试金法、泡沫塑料法、萃取法。具体方法详见任务2、任务3、任务4的相关内容。

六、贵金属元素的测定方法

(一)化学分析法

1.重量法测定金与银

将铅试金法得到的金、银合粒,称其总量。经“分金后”得到金粒,称重。两者重量之差为银的重量。

为了减少金在灰吹中的损失和便于分金,在熔炼时通常加入毫克量的银。如果试样中含金量较高,加入的银量必须相应增加,以达金量的3倍以上为宜。低于此数时,分金不完全,且银不能完全溶解,影响测定结果。

在实际应用中,不同含金量可按表7-1所示的银与金的比例加入银,可满意地达到分金效果。

表7-1 银与金的比例

如合粒中含银量低、金量高时,可称取两份试样,一份不加银,所得合粒称重,为金银合量。另一份加银,分金后测金。二者重量之差为银量。亦可先将金、银合粒称重,再加银灰吹,然后进行分金,测得金量。差减法得银量。

分金可采用热硝酸(1∶7),此时合粒中的银、钯以及部分铂溶解,而金不溶并呈一黑色的整粒留下来。如果留的下金粒带黄色,则表示分金不完全,应当取出,补加适量银,包在铅片中再灰吹,然后分金。

用硝酸(1∶7)分金后,金粒中还残留有微量银,可再用硝酸(1∶1)加热数分钟除去。

2.滴定法

在贵金属元素的滴定法中,主要利用贵金属离子在溶液中进行的氧化还原反应、形成稳定配合物反应、生成难溶化合物沉淀或被有机试剂萃取的化合反应。被滴定的贵金属离子本身多数是有颜色的,而且存在着复杂的化学形态和化学平衡反应,故导致滴定法的应用有一定的局限性。

金的滴定法主要依据氧化还原反应,包括碘量法、氢醌法、硫酸铈滴定法、钒酸铵滴定法及少数催化滴定法和原子吸收-碘量法联合的分析方法。其中碘量法和氢醌法在我国应用最普遍,它们与活性炭或泡塑吸附分离联用,方法的选择性较好,且可测得微量至常量的金,已成为经典的测定方法或实际生产中的例行测定规程。由于样品的成分的复杂性,故用活性炭吸附分离-碘量法测定金时,还应针对试样的特殊性采取相应的预处理手段。例如,含铅、银高的试样,可加入5~7g硫酸钠,煮沸使二氯化铅转化为硫酸铅沉淀过滤除去,银用盐酸溶液(2+98)洗涤,可避免氯化银沉淀以银的氯配离子形式进入溶液中而被活性炭吸附。含铁、铅、铜、锌的试样,在滴定时加入0.5~1 g氟化氢铵可掩蔽50mg铁、铅,3~5mL的EDTA溶液(25g/L)可掩蔽大量铅、铜、锌,但需立即加入碘化钾,以避免Au(Ⅲ)被还原为Au(Ⅰ)。含硫高时,于马弗炉中500℃温度下焙烧3h后再于650~700℃恒温1~2h,可避免金的分析结果偏低。含锑的试样,用氢氟酸蒸发2次,可消除其对金的影响。试样中含铂和钯时,会与碘化钾形成红色和棕色碘化物,且消耗硫代硫酸钠,可于滴定时加入5mL硫氰酸钾溶液(250g/L),使之形成稳定的配合物而消除干扰。用碘量法测定金的误差源于多种因素:金标准溶液的稳定性、活性炭吸附金的酸度、水浴蒸发除氮氧化物的条件、淀粉指示剂用量、滴定前碘化钾的加入量、分取试液和滴定液的浓度、标定量的选择等,因此应予以注意。

关于银的化学滴定法,应用最普遍的是硫氰酸钾(铵)和碘化钾沉淀滴定法,其次是硫代硫酸钠返滴定法、硫酸亚铁氧化还原滴定法和二硫腙萃取滴定法等。

硫氰酸钾滴定法测定银:将试金所得的金、银合粒用稀硝酸溶解其中的银,以硫酸铁铵为指示剂,用硫氰酸钾标准溶液滴定至淡红色,即为终点。其主要反应式如下:

Ag+KCNS→K+AgCNS↓

Fe3++3KCNS→3K+Fe(CNS)3

在铂族金属的滴定中,以莫尔盐还原Pt(Ⅳ),用钒酸铵返滴定法或二乙基二硫代氨基甲酸钠滴定法的条件苛刻,选择性差,不能用于组成复杂的试样分析中。于pH为3~4酸性介质中,长时间煮沸的条件下,Pt(Ⅳ)能与EDTA定量络合,在乙酸-乙酸钠缓冲介质中,用二甲酚橙作指示剂,乙酸锌滴定过量的EDTA,可测定5~30mg Pd。利用这一特性,采用丁二肟分离钯,用酸分解滤液中的丁二肟,可测定含铂、钯的冶金物料中的铂。Pd(Ⅱ)的滴定测定方法较多,常见的是利用形成难溶化合物沉淀和稳定配合物的反应。在较复杂的冶金物料中,采用选择性试剂掩蔽钯,二甲酚橙作指示剂,锌(铅)盐滴定析出与钯等量的EDTA测定钯的方法较多。

(二)仪器分析法

贵金属在地壳中的含量很低,因此各种仪器分析方法在贵金属的测定中获得了非常广泛的应用。主要有可见分光光度法、原子吸收光谱法、发射光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法等。具体的应用请参阅本项目的任务2、任务3、任务4的相关内容。

七、贵金属矿石的分析任务及其分析方法的选择

贵金属矿石的分析项目主要是金、银、铑、钌、钯、锇、铱、铂含量的测定,除精矿外,一般矿石中贵金属的含量都比较低,因此,在选择分析方法时,灵敏度是需要重点考虑的因素。一般,银的测定主要用原子吸收光谱法和可见分光光度法,且10 g/t以上含量的不需要预富集,可直接测定。可见分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法在金的测定上都获得了广泛的应用。金的测定一般都需要采取预富集手段。铑、钌、钯、锇、铱、铂在矿石中含量甚微,因此对方法的灵敏度要求较高。目前,电感耦合等离子体质谱法在铑、钌、钯、锇、铱、铂的测定的应用已经越来越广泛和成熟。另外光度法、电感耦合等离子体发射光谱法也在铑、钌、钯、锇、铱、铂的测定中发挥了重要作用。

技能训练

实战训练

1.学生实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成贵金属矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

2. 电解法处理回收贵金属的工艺流程图。

一、项目的背景
贵金属即金Au、银Ag、铂Pt、钯Pd、锶、锇Os、铑Rh和钌Ru 八种金属。由于这些金属在地壳中含量稀少,提取困难,但性能优良,应用广泛,价格昂贵而得名贵金属。除人们熟知金Au、银Ag外,其他六种金属元素称为铂族元素(铂族金属)。
贵金属在地壳中的丰度极低,除银有品位较高的矿藏外,50%以上的金和90%以上的铂族金属均分散共生在铜、铅、锌和镍等重有色金属硫化矿中,其含量极微、品位低至PPm级甚至更低。
随着人类社会的发展,矿物原料应用范围日益扩大,人类对矿产的需求量也不断增加,因此,需要最大限度地提高矿产资源的利用率和金属循环使用率。由于贵金属的化学稳定性很高,为它们的再生回收利用提供了条件,加之其本身稀贵,再生回收有利可图。
二、贵金属回收利用概况
由于贵金属在使用过程中本身没有损耗,且在部件中的含量比原矿要高出许多,各国都把含贵金属的废料视作不可多得的贵金属原料,并给以足够的重视。且纷纷加以立法、并成立专业贵金属回收公司。
日本20世纪70年代就颁布了固体废物处理和清除法律,成立回收协会,至目前已从含贵金属的废弃物中回收有价金属20几种。
美国回收贵金属已有几十年的历史,形成回收利用产业,成立专门的公司,如阿迈克斯金属公司和恩格哈特公司,1985年就回收5吨铂族金属,1995年回收的贵金属增加到12.4~15.5吨。
德国1972年颁布了废弃管理法,规定废弃物必须作为原料再循环使用,要求提高废弃物对环境的无害程度。德国有著名的迪高沙公司和暗包岩原料公司都建有专门的装置回收处理含贵金属的废料。
英国有全球性金属再生公司—阿迈隆金属公司,专门回收处理各种含贵金属废料,回收的铂、钯、银的富集物就有上千吨。
我国的各类电子设备、仪器仪表、电子元器件和家用电器等随着经济发展和生活水平的提高,淘汰率迅速提高,形成大量的废弃物垃圾,不仅浪费了资源和能源,且造成严重的环境影响。随着时间的延续,更新的数量还会增加。如果作为城市垃圾埋掉、烧掉,必将造成空气、土壤和水体的严重污染,影响人民的身体健康。且电器设备的触点和焊点中都含有贵金属,应设法回收再利用。
三、生产工艺简介
根据原料、规模、产品方案的不同、回收工艺有所区别。总体上讲,针对铜、铅阳极泥有火法和湿法之区别,针对二次资源则除火法湿法之外还涉及拆解、机械和预处理工序。
1、铜阳极泥处理工艺
l 火法工艺
火法的传统工艺流程如下
铜阳极泥
H2SO4 硫酸化焙烧 烟气(SO2 SeO2) 吸收
稀H2SO 浸出 CuSO4 溶液 粗Se
浸出渣
还原熔炼 炉渣
贵铅
NaNO3 氧化精炼 渣滓 回收Bi Te
银阳极
银电解 海绵银 银锭
黑金粉
金电解 废电解液 回收铂、钯
金板 金锭
该流程的主要环节是硫酸化焙烧浸出分离,铜转化为可溶性硫酸铜,硒化物分解使硒氧化为二氧化硒挥发分离,含SeO2 和SO2 的气体由气管抽至吸收塔,SeO2被水吸收生成H2SeO3,并同时被在水中的SO2还原为粗Se。焙烧浸出得CuSO4和部分AgSO4硫酸碲溶液,用铜(片或粉)置换出含碲的粗银粉送银精炼。金、银富集在浸出渣中。还原熔炼主要用浸出渣加氧化铅或铅阳极泥合并进行,产出含金银的贵铅,然后贵铅经氧化精炼分离铅、铋和碲,浇铸为金银合金,经银电解及精炼,产出海绵银铸锭,银泥(黑金粉)电解得金,金电解废液回收铂、钯。该法的特点是回收率高,可达90%以上,对原料适应性强,比较适合规模处理,欧美和前苏联国家大多采用火法流程,流程的缺点是冗长,中间环节多,积压金属和资金严重,特别是规模小时更为突出,影响经济效益。除此之外,高温焚烧产生有害气体,特别是铅的挥发,产生二次污染,因此它的应用受到限制。
● 湿法工艺
20世纪70年代湿法流程迅速崛起,并得到国内冶金界的认可,下面做以简单介绍:
铜阳极泥
H2SO4 浸出铜 CuSO4溶液
乙酸盐 浸出铅 Cu、Pb溶液
HNO3 浸出银 AgNO3溶液 Ag
王水 浸出金 渣 熔炼 回收Sn
金溶液
萃取精炼
金粉
该法用不同的酸分段浸出阳极泥中的贱金属杂质,以富集金、银。用H2SO4先使铜成为CuSO4,以乙酸盐常温浸出铅,使铅生成可溶的乙酸铅(Pb(Ac)2)分离。浸出渣用硝酸溶解银、铜、硒、碲,含银溶液用盐酸或食盐沉淀出氯化银(AgCl),其纯度可达99%以上,回收率可达96%,再从氯化银中精炼提取银,用王水从硝酸石溶渣中溶解金,金溶液用二丁基卡必醇(DBC)萃取,草酸直接还原得金产品,金纯度>99.5%,回收率可达99%。湿法工艺金银总回收率分别大于99%和98%。由于全流程金属分离都在酸性水溶液中进行,因此称为全湿法工艺,与火法工艺相比,有能耗低,有价金属综合利用好、废弃物少、生产过程连续等优点。
l 选冶联合工艺流程;
铜阳极泥
H2SO4 磨矿脱铜
浸出 CuSO4溶液
浸出渣
H2O 调浆
浮选 尾矿 炼铅
精矿
焙烧 焙炼 烟气 回收硒
银阳极 电解 银粉 银锭
黑金粉 电解 金板 金锭
该流程用于处理含铅高的铜阳极泥,流程包括阳极泥加硫酸磨矿及浸出铜,含金、银的浸出渣调浆进行浮选,选出的精矿进行苏打氧化熔炼产出银阳极,电解产出银和金粉等工序。流程中金、银回收率分别达到95%和94%。由于引入浮选工序,精矿熔炼设备规模为火法工艺的1/5,试剂消耗节约一半,减少了铅的污染,简化了后续熔炼过程,提高了经济效益。
l 天津大通铜业有限公司金银分厂阳极泥处理流程
成份
Cu Au Ag Pb Sb Bi Sn Ni As Te
15.64 2132g/T 15.94 9.95 20.17 1.32 0.92 0.40 7.30
流程
阳极泥
H2SO NaClO3(氧化剂)
稀酸浸出
控电位V420mv
炉渣 炉液
HCl H2SO4 NaClO3
V.1200mv金的控电氯化 沉Se Te
SO2 Cu粉置换
SO2 SeO2 溶液
炉液 NaClO3炉渣1200mv 回收得H2SeO3
粗Te CuSO4
尾液 Au粉 硒
草酸 二次金的控电氯化 浓缩结晶 尾液
炉液 炉渣
Au粉 尾液 硫代硫酸钠浸银
铸Au锭
炉渣 炉液
富集Pb.Sb 水含肼沉银
外销
尾液 银粉
银粉
银阳极泥
电解
电银 阳极泥 电解液
回收金
该流程设计上没有预焙烧工序,而是以浸铜时添加氧化剂(NaClO3),使阳极泥中Cu、Se、Te氧化成为CuSO4、H2SeO3和H2TeO3并转入溶液,在溶液中的H2SeO3用SO2还原得到粗Se。Te则用铜粉置换得Te精矿,CuSO4经浓缩得到结晶CuSO4.5H2O。浸出渣经二次控电氯化浸出金,一次浸出金用SO2还原,二次浸出金用草酸还原,金的回收率可达98.4%,控电氯化渣用硫代硫酸钠(Na2S2O3)浸银。硫代硫酸钠试剂毒性小,消耗少,反应速度快,适于处理含银物料,银的回收率可达99%,纯度达99%。
大通铜业有限公司的阳极泥含铅和锑比一般的铜阳极泥高,类似于铅阳极泥,因此所用的流程类似于铅阳极泥的氯化法流程,首先用FeCl3或HCl+NaCl溶液浸出铅阳极泥中的铜、砷、锑、铋及部分铅,同时有少部分银生成AgCl2-溶解,浸出液用水稀释至PH0.5,使SbCl3水解为SbOCl沉淀,同时沉淀出AgCl(沉淀率达99%以上),浸出渣用氨溶液浸出银,使转为可溶性的Ag(NH3)2Cl,再从溶液中用水合肼还原银,氨浸出渣用HCl+Cl2或HCl+NaClO3浸出回收金,区别在于金、银回收先后的选择问题,这需要视具体成分而定。
以上是处理各种阳极泥的几种典型原则流程,可根据处理阳极泥的成分进行不同的组合。
2、金、银基合金及双金属复合材料以及带载体的贵金属废催化剂的回收流程。
●金银合金和金属废品废料、废件的回收流程
含Au、Ag以及ΣPt的双金属废料废件
预处理
热分解400~600℃
硝酸浸出
难溶的残渣(Au、Pt、Pb等) 硝酸浸出液(含Ag及其它金属)
Cl
溶解 回收AgCl
残渣 溶液 AgCl 其它金属
硫化物SO2或NaSO3
沉金 粗Ag提纯
粗Au 溶液(Pt、Pb)
提纯
预处理可以是拆解或机械处理,热处理的主要目的是在400~600℃条件下去除有机物,以及低溶点的金属,然后用qN HNO3溶解,使物料中的银和其它贱金属氧化,以硝酸盐形式转入溶液,从溶液中回收银和提纯,硝酸不溶残渣,可以用王水或水氯化浸出或其它溶解金、铂和钯,从溶液中回收分离提纯Au、Pt和Pd。
黄金的提纯:粗金返溶解用二丁基必醇萃取金,反萃之后,再沉金,得到提纯。而含Pt、Pd溶液可用二烷基硫醚或N-二仲章基氨基乙酸(N540)萃取钯,达到与铂的分离,钯的萃取率可达99.5%,铂的萃取率几乎是零。有机相经水洗后用NH3.H2O反萃取钯,反萃取液再回收提纯钯。二烷基硫醚被认为是迄今为止工业上分离铂、钯最有效的萃取剂,它的唯一缺点是稳定性稍差,易氧化,萃取平衡时间稍长,萃取液回收铂。当然也可以用30%N540异戊醇+70%煤油萃取铂和钯分离。30%N540萃铂的条件4级萃取,1级洗涤3级反萃、铂的萃取率可达99.9%,4NHCl反萃,反萃率为99.95%,从反萃液中获得纯度为99.9%的铂产品。
对于铂、钯的分离提纯问题,传统的方法是反复沉淀法,水解沉淀法,硫化物沉淀,氨盐沉淀或离子交换分离。沉淀法的缺点,首先是分离效率不高,其次是周期长,回收率低,试剂消耗大、操作条件不佳麻烦。离子交换法,树脂饱和浓度低,用量大,交换彻底、交换时间长。萃取分离提取是近期崛起的分离方法,它的传播速度快,避开湿法冶金中最为繁杂的液固分离的问题,萃取剂可循环使用,流程相对简单,周期短,金属回收率高,纯化效果好的优点。因此被广泛应用。
● 以∑Pt为载体的催化剂回收流程
∑Pt载体有蜂窝状和小球状高溶点硅、铝酸盐,由于高温使用过程部分贵金属会向内层渗透,部分被烧结或被釉化包裹,或转化为化学惰性的氧化物和硫化物,因此他们的回收利用带有一定的难度。他们的回收必须经预处理富集阶段,然后再行分离提纯,预处理富集阶段分为:
▲火法富集法,高温熔炼以铁为辅收剂。碳作还原剂,加碳熔剂使载体转变为低熔点、低粘度炉渣,获得含富铂族金属的铁合金,后续酸浸除铁,获得铂族金属精矿。该方法的Pd、Pt回收率分别为99%,98%以上。也可以用硫化物(Fe2S,Ni3S2)作捕收剂,较低温度熔炼,获得冰镍后用铝活法化酸浸,获得铂族金属精矿。
▲载体溶解法:γ—Al2O3载体催化剂,经磨细用H2SO4.NaOH或NaOH+Na2SO3+联胺溶液直接溶解氧化铝,而贵金属全部富集在不溶解渣中。
▲再后续的分离提纯就可以接以上流程湿法部分,形成完整的流程。

3. 铅泥的处理过程

铅泥先经过滤、洗涤,脱除铅电解液。铅泥处理的传统方法是将铅阳极泥(也可搭配脱硒后的铜泥)在火焰炉中进行还原熔炼,获得含(Au+Ag)30%~40%的贵铅。贵铅进分银炉氧化熔炼,砷、锑及部分铅挥发入烟尘,铅、铋、铜、碲分期入渣,作为分别回收的富集原料。将分银炉产出含(Au+Ag)达98.5%的金银合金铸成阳极,进行银电解精炼,银以粉状析出,经熔铸产出纯度99.95%~99.99%的银锭。银电解的阳极泥(俗称黑金粉),经硝酸分解后,在盐酸溶液中进行电解精炼,产出纯度99.99%的金。金电解废液送专门处理回收铂、钯等。
铅泥处理的传统方法存在砷、锑不好回收,污染环境,生产周期长,能耗大等缺点。近年来研究成功的全湿法流程有选冶联合法、酸浸法、碱浸法、水溶液氯化法、加压浸出法及甘油碱浸法等,但均未普遍用于工业生产。

4. 铅阳极泥和铜阳极泥在提取贵金属上有什么不同

现在有采用波立登技术处理铜阳极泥的,先湿法
再火法加压--卡尔多炉--银电解--金电解

5. 电解析碳后出来的银泥有回收吗

、项目背景
贵金属即金Au、银Ag、铂Pt、钯Pd、锶Sr、锇Os、铑Rh钌Ru 八种金属由于些金属壳含量稀少提取困难性能优良应用广泛价格昂贵名贵金属除熟知金Au、银Ag外其六种金属元素称铂族元素(铂族金属)
贵金属壳丰度极低除银品位较高矿藏外50%金90%铂族金属均散共铜、铅、锌镍等重色金属硫化矿其含量极微、品位低至PPm级甚至更低
随着类社发展矿物原料应用范围益扩类矿产需求量断增加需要限度提高矿产资源利用率金属循环使用率由于贵金属化稳定性高再收利用提供条件加其本身稀贵再收利图
二、贵金属收利用概况
由于贵金属使用程本身没损耗且部件含量比原矿要高许各都含贵金属废料视作贵金属原料并给足够重视且纷纷加立、并立专业贵金属收公司
本20世纪70代颁布固体废物处理清除律立收协至目前已含贵金属废弃物收价金属20几种
美收贵金属已几十历史形收利用产业立专门公司阿迈克斯金属公司恩格哈特公司1985收5吨铂族金属1995收贵金属增加12.4~15.5吨
德1972颁布废弃管理规定废弃物必须作原料再循环使用要求提高废弃物环境害程度德著名迪高沙公司暗包岩原料公司都建专门装置收处理含贵金属废料
英全球性金属再公司—阿迈隆金属公司专门收处理各种含贵金属废料收铂、钯、银富集物千吨
我各类电设备、仪器仪表、电元器件家用电器等随着经济发展水平提高淘汰率迅速提高形量废弃物垃圾仅浪费资源能源且造严重环境影响随着间延续更新数量增加作城市垃圾埋掉、烧掉必造空气、土壤水体严重污染影响民身体健康且电器设备触点焊点都含贵金属应设收再利用
三、产工艺简介
根据原料、规模、产品案同、收工艺所区别总体讲针铜、铅阳极泥火湿区别针二资源则除火湿外涉及拆解、机械预处理工序
1、铜阳极泥处理工艺
l 火工艺
火传统工艺流程
铜阳极泥
H2SO4 硫酸化焙烧 烟气(SO2 SeO2) 吸收
稀H2SO 浸 CuSO4 溶液 粗Se
浸渣
原熔炼 炉渣
贵铅
NaNO3 氧化精炼 渣滓 收Bi Te
银阳极
银电解 海绵银 银锭
黑金粉
金电解 废电解液 收铂、钯
金板 金锭
该流程主要环节硫酸化焙烧浸离铜转化溶性硫酸铜硒化物解使硒氧化二氧化硒挥发离含SeO2 SO2 气体由气管抽至吸收塔SeO2水吸收H2SeO3,并同水SO2原粗Se焙烧浸CuSO4部AgSO4硫酸碲溶液用铜(片或粉)置换含碲粗银粉送银精炼金、银富集浸渣原熔炼主要用浸渣加氧化铅或铅阳极泥合并进行产含金银贵铅贵铅经氧化精炼离铅、铋碲浇铸金银合金经银电解及精炼产海绵银铸锭银泥(黑金粉)电解金金电解废液收铂、钯该特点收率高达90%原料适应性强比较适合规模处理欧美前苏联家采用火流程流程缺点冗间环节积压金属资金严重特别规模更突影响经济效益除外高温焚烧产害气体特别铅挥发产二污染应用受限制
● 湿工艺
20世纪70代湿流程迅速崛起并内冶金界认面做简单介绍:
铜阳极泥
H2SO4 浸铜 CuSO4溶液
乙酸盐 浸铅 Cu、Pb溶液
HNO3 浸银 AgNO3溶液 Ag
王水 浸金 渣 熔炼 收Sn
金溶液
萃取精炼
金粉
该用同酸段浸阳极泥贱金属杂质富集金、银用H2SO4先使铜CuSO4乙酸盐温浸铅使铅溶乙酸铅(Pb(Ac)2)离浸渣用硝酸溶解银、铜、硒、碲含银溶液用盐酸或食盐沉淀氯化银(AgCl),其纯度达99%收率达96%再氯化银精炼提取银用王水硝酸石溶渣溶解金金溶液用二丁基卡必醇(DBC)萃取草酸直接原金产品金纯度>99.5%,收率达99%湿工艺金银总收率别于99%98%由于全流程金属离都酸性水溶液进行称全湿工艺与火工艺相比能耗低价金属综合利用、废弃物少、产程连续等优点
l 选冶联合工艺流程;
铜阳极泥
H2SO4 磨矿脱铜
浸 CuSO4溶液
浸渣
H2O 调浆
浮选 尾矿 炼铅
精矿
焙烧 焙炼 烟气 收硒
银阳极 电解 银粉 银锭
黑金粉 电解 金板 金锭
该流程用于处理含铅高铜阳极泥流程包括阳极泥加硫酸磨矿及浸铜含金、银浸渣调浆进行浮选选精矿进行苏打氧化熔炼产银阳极电解产银金粉等工序流程金、银收率别达95%94%由于引入浮选工序精矿熔炼设备规模火工艺1/5试剂消耗节约半减少铅污染简化续熔炼程提高经济效益
l 津通铜业限公司金银厂阳极泥处理流程

Cu Au Ag Pb Sb Bi Sn Ni As Te
15.64 2132g/T 15.94 9.95 20.17 1.32 0.92 0.40 7.30
流程
阳极泥
H2SO NaClO3(氧化剂)
稀酸浸
控电位V420mv
炉渣 炉液
HCl H2SO4 NaClO3
V.1200mv金控电氯化 沉Se Te
SO2 Cu粉置换
SO2 SeO2 溶液
炉液 NaClO3炉渣1200mv 收H2SeO3
粗Te CuSO4
尾液 Au粉 硒
草酸 二金控电氯化 浓缩结晶 尾液
炉液 炉渣
Au粉 尾液 硫代硫酸钠浸银
铸Au锭
炉渣 炉液
富集Pb.Sb 水含肼沉银
外销
尾液 银粉
银粉
银阳极泥
电解
电银 阳极泥 电解液
收金
该流程设计没预焙烧工序浸铜添加氧化剂(NaClO3)使阳极泥Cu、Se、Te氧化CuSO4、H2SeO3H2TeO3并转入溶液溶液H2SeO3用SO2原粗SeTe则用铜粉置换Te精矿CuSO4经浓缩结晶CuSO4.5H2O浸渣经二控电氯化浸金浸金用SO2原二浸金用草酸原金收率达98.4%控电氯化渣用硫代硫酸钠(Na2S2O3)浸银硫代硫酸钠试剂毒性消耗少反应速度快适于处理含银物料银收率达99%纯度达99%
通铜业限公司阳极泥含铅锑比般铜阳极泥高类似于铅阳极泥所用流程类似于铅阳极泥氯化流程首先用FeCl3或HCl+NaCl溶液浸铅阳极泥铜、砷、锑、铋及部铅同少部银AgCl2-溶解浸液用水稀释至PH0.5使SbCl3水解SbOCl沉淀同沉淀AgCl(沉淀率达99%)浸渣用氨溶液浸银使转溶性Ag(NH3)2Cl再溶液用水合肼原银氨浸渣用HCl+Cl2或HCl+NaClO3浸收金区别于金、银收先选择问题需要视具体定
处理各种阳极泥几种典型原则流程根据处理阳极泥进行同组合
2、金、银基合金及双金属复合材料及带载体贵金属废催化剂收流程
●金银合金金属废品废料、废件收流程
含Au、Ag及ΣPt双金属废料废件
预处理
热解400~600℃
硝酸浸
难溶残渣(Au、Pt、Pb等) 硝酸浸液(含Ag及其金属)
Cl
溶解 收AgCl
残渣 溶液 AgCl 其金属
硫化物SO2或NaSO3
沉金 粗Ag提纯
粗Au 溶液(Pt、Pb)
提纯
预处理拆解或机械处理热处理主要目400~600℃条件除机物及低溶点金属用qN HNO3溶解使物料银其贱金属氧化硝酸盐形式转入溶液溶液收银提纯硝酸溶残渣用王水或水氯化浸或其溶解金、铂钯溶液收离提纯Au、PtPd
黄金提纯:粗金返溶解用二丁基必醇萃取金反萃再沉金提纯含Pt、Pd溶液用二烷基硫醚或N-二仲章基氨基乙酸(N540)萃取钯达与铂离钯萃取率达99.5%铂萃取率几乎零机相经水洗用NH3.H2O反萃取钯反萃取液再收提纯钯二烷基硫醚认迄今止工业离铂、钯效萃取剂唯缺点稳定性稍差易氧化萃取平衡间稍萃取液收铂用30%N540异戊醇+70%煤油萃取铂钯离30%N540萃铂条件4级萃取1级洗涤3级反萃、铂萃取率达99.9%4NHCl反萃反萃率99.95%反萃液获纯度99.9%铂产品
于铂、钯离提纯问题传统反复沉淀水解沉淀硫化物沉淀氨盐沉淀或离交换离沉淀缺点首先离效率高其周期收率低试剂消耗、操作条件佳麻烦离交换树脂饱浓度低用量交换彻底、交换间萃取离提取近期崛起离传播速度快避湿冶金繁杂液固离问题萃取剂循环使用流程相简单周期短金属收率高纯化效优点广泛应用
● ∑Pt载体催化剂收流程
∑Pt载体蜂窝状球状高溶点硅、铝酸盐由于高温使用程部贵金属向内层渗透部烧结或釉化包裹或转化化惰性氧化物硫化物收利用带定难度收必须经预处理富集阶段再行离提纯预处理富集阶段:
▲火富集高温熔炼铁辅收剂碳作原剂加碳熔剂使载体转变低熔点、低粘度炉渣获含富铂族金属铁合金续酸浸除铁获铂族金属精矿该Pd、Pt收率别99%98%用硫化物(Fe2SNi3S2)作捕收剂较低温度熔炼获冰镍用铝化酸浸获铂族金属精矿
▲载体溶解:γ—Al2O3载体催化剂经磨细用H2SO4.NaOH或NaOH+Na2SO3+联胺溶液直接溶解氧化铝贵金属全部富集溶解渣
▲再续离提纯接流程湿部形完整流程

6. 大家有谁知道处理铜铅阳极泥的一系列工艺流程,跪求跪求啊啊!!!!

铜铅矿经过鼓风炉--吹炼炉--精炼炉--电解精炼中产出的阳极泥,含有大量的贵金属和稀有元素,是提取贵金属的重要原料。处理铜铅阳极泥的工艺流程为: 硫酸化焙烧蒸硒--稀硫酸浸出脱铜--还原熔炼--氧化精炼--金银电解精炼--铂钯回收 该流程工艺成熟,易于操作控制,对物料适应性强。下面介绍铜铅阳极泥--金银合金板的冶炼工艺。 1. 硫酸化焙烧工序兼有脱铜与提硒两个作用故得到广泛采用,先将含水20%左右的铜铅阳极泥与工业硫酸混合拌成浆料,装入不锈钢盘中,焙烧过程中铜镍等贱金属在250℃下完全转变为水溶性硫酸盐,硒化物先在240—300℃下于硫酸反应生成硒酸盐,然后在500---650℃的高温下分解为SeO2. SeO2的升华温度为315℃,挥发出来的SeO2进入吸收罐被水吸收形成亚硒酸,同时被炉气中的二氧化硫还原为单体硒,得到的粗硒含量一般在96---98%。 2.酸浸脱铜 焙烧后的阳极泥—焙砂,其中铜镍等贱金属已经转变为硫酸盐,用水即可浸出,但为提高浸出率,在浸出液中加入少量硫酸,转化为硫酸银的银也转入溶液,故浸出过滤后的浸出液需用铜置换出其中的银,得粗银粉,铜置换一般用铜残极板或废铜丝架于置换槽假底上进行。置换后的硫酸铜溶液多用以生产胆矾,粗银粉送分银炉处理。浸出渣经热水充分洗涤后送贵铅炉还原熔炼。 3.贵铅炉还原熔炼还原熔炼原料为经脱铜,硒后的铜阳极泥或铅阳极泥,其杂质主要以氧化物或含氧化物的盐类存在。还原熔炼的目的是使这些杂质进入渣中或挥发进入烟尘而除去,使铅的化合物还原为金属铅。铅是贵金属的良好捕集剂,熔炼过程中贵金属溶解在铅液中形成贵金属与铅的合金,即贵铅。河南隆江冶金化工设备,地处“愚公故里”河南省济源市。济源是连接东南、通达西北的重要商品集散地,被称作是中原地区的能源基地、电力基地、铅锌冶炼基地、煤化工基地和建材基地,是经济活跃和最具有发展潜力的地区之一。

7. 废弃手机中的金属材料回收利用有什么优点

你是池阳中学 8.8班的一员么,

8. 电解铅工艺介绍

理论原理跟电解铜差不多,以下是工艺介绍

电解铅的冶炼工艺流程
铅冶金是白银生产的最佳载体:一般铅对金银的捕集回收率都在95%以上,因此金银的回收是与铅的生产状况直接相关的。现在世界上约有80%的原生粗铅是采用传统的烧结一鼓风炉熔炼工艺方法生产的。传统法技术成熟,较完善可靠,其不足之处在于脱硫造块的烧结过程中,烧结烟气的SO2浓度较低,硫的回收利用尚有一定难度,鼓风炉熔炼需要较昂贵的冶金焦炭。为了解决上述问题,冶金工作者进行了炼铅新工艺的研究。八十年代以来,相继出现了QSL法、闪速熔炼法、TBRC转炉顶吹法、基夫赛特汉和艾萨熔炼法等新的炼铅方法。其中,QSL法是德国鲁奇公司七十年代开发的直接炼铅新工艺,加拿大、韩国和我国虽然先后购买了此专利建厂,但生产效果不甚理想;闪速熔炼法尚未实现工业化生产;TBRC法是瑞典波里顿公司所创,但此法作业为间断性的,且炉衬腐蚀严重;基夫赛特法由原苏联有色金属研究院研究成功,现已有多个厂家实现了工业化生产,是一种各项指标先进、技术成熟可靠的炼铅新工艺,但采用该法单位投资大,只有用于较大生产规模的工厂时,才能充分发挥其效益。

艾萨炼铅技术基于由上方插入的赛罗浸没喷枪将氧气喷射入熔体。产生涡动熔池,让强烈的氧化反应或者还原反应迅速发生。在第一段,熔炼炉产出的高铅渣经过流槽送还原炉,氧化脱硫所产的烟气经除尘后送制酸系统。在第二段还原炉中,所产粗铅和弃渣从排放口连续放出,并在传统的前床中分离,所产烟气进行除尘处理后经烟囱排放。

艾萨法熔炼流程。该工艺流程先进,对原料适应性广、生产规模可大可小,比较灵活、指标先进、SO2烟气浓度高,可解决生产过程中烟气污染问题;同时冶炼过程得到强化,金银捕集率高,余热利用好,能耗低。它不仅适应308厂铅银冶炼的改建要求,而且能够对我国的银铅冶金生产和技术进步起到推动作用,故推荐引进艾萨法作为本项目粗铅冶炼生产工艺的第一方案。

传统的鼓风烧结——鼓风炉法虽然在烟气制酸方面尚有一定困难,但近年来,我国株洲冶炼厂、沈阳冶炼厂、济源冶炼厂等大型铅厂的改扩建工程仍然采用此法,是因为它具有建设快、投产、达产快的优点。

粗铅精炼工艺有火法和电解法两种。一般来说,电解法对银、金、铋和锑的分离效果好,铅、银等金属的回收率高,劳动条件好,机械化自动化程度高。电解法的缺点是基建投资较火法高。采用火法需要处理大量中间产物,能耗较高,致使其生产成本较电解法高。鉴于本项目粗铅含银、铋等金属较多。

常规方法处理铅阳极泥是采用火法——电解法流程获得金、银,渣进行还原熔炼,精炼得精铋等,流程简单、技术成熟,工人易操作,但有价金属回收率不高,锑、铅呈氧化物形态挥发进入烟尘,不但不便于综合回收,而且造成第二次污染。

9. 铅电解阳极泥销售哪些元素可以计价

铜铅矿经过鼓风炉--吹炼炉--精炼炉--电解精炼中产出的阳极泥,含有大量的贵金属和稀有元素,是提取贵金属的重要原料。
处理铜铅阳极泥的工艺流程为:硫酸化焙烧蒸硒--稀硫酸浸出脱铜--还原熔炼--氧化精炼--金银电解精炼--铂钯回收 该流程工艺成熟,易于操作控制,对物料适应性强。
下面介绍铜铅阳极泥--金银合金板的冶炼工艺。
1.硫酸化焙烧工序兼有脱铜与提硒两个作用故得到广泛采用,先将含水20%左右的铜铅阳极泥与工业硫酸混合拌成浆料,装入不锈钢盘中,焙烧过程中铜镍等贱金属在250℃下完全转变为水溶性硫酸盐,硒化物先在240—300℃下于硫酸反应生成硒酸盐,然后在500---650℃的高温下分解为SeO2.SeO2的升华温度为315℃,挥发出来的SeO2进入吸收罐被水吸收形成亚硒酸,同时被炉气中的二氧化硫还原为单体硒,得到的粗硒含量一般在96---98%.2.酸浸脱铜 焙烧后的阳极泥—焙砂,其中铜镍等贱金属已经转变为硫酸盐,用水即可浸出,但为提高浸出率,在浸出液中加入少量硫酸,转化为硫酸银的银也转入溶液,故浸出过滤后的浸出液需用铜置换出其中的银,得粗银粉,铜置换一般用铜残极板或废铜丝架于置换槽假底上进行。
置换后的硫酸铜溶液多用以生产胆矾,粗银粉送分银炉处理。
浸出渣经热水充分洗涤后送贵铅炉还原熔炼。
3.贵铅炉还原熔炼还原熔炼原料为经脱铜,硒后的铜阳极泥或铅阳极泥,其杂质主要以氧化物或含氧化物的盐类存在。
还原熔炼的目的是使这些杂质进入渣中或挥发进入烟尘而除去,使铅的化合物还原为金属铅。
铅是贵金属的良好捕集剂,熔炼过程中贵金属溶解在铅液中形成贵金属与铅的合金,即贵铅。
河南隆江冶金化工设备,地处“愚公故里”河南省济源市。
济源是连接东南、通达西北的重要商品集散地,被称作是中原地区的能源基地、电力基地、铅锌冶炼基地、煤化工基地和建材基地,是经济活跃和最具有发展潜力的地区之一。

10. 铅锌烟尘硫酸浸出工艺答辩时可以问什么问题

铜铅矿经过鼓风炉--吹炼炉--精炼炉--电解精炼中产出的阳极泥,含有大量的贵金属和稀有元素,是提取贵金属的重要原料。处理铜铅阳极泥的工艺流程为: 硫酸化焙烧蒸硒--稀硫酸浸出脱铜--还原熔炼--氧化精炼--金银电解精炼--铂钯回收 该流程工艺成熟,易于操作控制,对物料适应性强。下面介绍铜铅阳极泥--金银合金板的冶炼工艺。 1. 硫酸化焙烧工序兼有脱铜与提硒两个作用故得到广泛采用,先将含水20%左右的铜铅阳极泥与工业硫酸混合拌成浆料,装入不锈钢盘中,焙烧过程中铜镍等贱金属在250℃下完全转变为水溶性硫酸盐,硒化物先在240—300℃下于硫酸反应生成硒酸盐,然后在500---650℃的高温下分解为SeO2. SeO2的升华温度为315℃,挥发出来的SeO2进入吸收罐被水吸收形成亚硒酸,同时被炉气中的二氧化硫还原为单体硒,得到的粗硒含量一般在96---98%。 2.酸浸脱铜 焙烧后的阳极泥—焙砂,其中铜镍等贱金属已经转变为硫酸盐,用水即可浸出,但为提高浸出率,在浸出液中加入少量硫酸,转化为硫酸银的银也转入溶液,故浸出过滤后的浸出液需用铜置换出其中的银,得粗银粉,铜置换一般用铜残极板或废铜丝架于置换槽假底上进行。置换后的硫酸铜溶液多用以生产胆矾,粗银粉送分银炉处理。浸出渣经热水充分洗涤后送贵铅炉还原熔炼。 3.贵铅炉还原熔炼还原熔炼原料为经脱铜,硒后的铜阳极泥或铅阳极泥,其杂质主要以氧化物或含氧化物的盐类存在。还原熔炼的目的是使这些杂质进入渣中或挥发进入烟尘而除去,使铅的化合物还原为金属铅。铅是贵金属的良好捕集剂,熔炼过程中贵金属溶解在铅液中形成贵金属与铅的合金,即贵铅。河南隆江冶金化工设备,地处“愚公故里”河南省济源市。济源是连接东南、通达西北的重要商品集散地,被称作是中原地区的能源基地、电力基地、铅锌冶炼基地、煤化工基地和建材基地,是经济活跃和最具有发展潜力的地区之一。

阅读全文

与贵金属铅阳极泥炉况分析相关的资料

热点内容
金石贵金属 浏览:967
资产证券化循环结构 浏览:825
股东新进与不变 浏览:999
84有色金属价格 浏览:998
买币交易所危险吗 浏览:284
股指期货赚钱法 浏览:535
购买公司股份协议书 浏览:450
广西理财公司有哪些项目 浏览:377
上市银行股东限售规定 浏览:231
中兴股票是什么 浏览:139
证券营业部可行性报告 浏览:945
北京五环的房子价格 浏览:407
股票的交聊群 浏览:519
肺炎疫情影响股票吗 浏览:860
甘肃省农民五万贷款 浏览:246
山东滨建集团股份有限公司 浏览:34
华泰证券买etf手续费 浏览:758
协创股票 浏览:484
公积金贷款是不是卖家会有意见 浏览:33
维萨卡汇率 浏览:366