⑴ 什么叫分形什么叫背离
分形由5根k线组合,分上分形和下分形,背离是股价创新高或是新低指标不跟随,就是背离
⑵ 如何理解分形的维度
不同的尺度(大小)的同一种分形图形之间具有某个共同的几何参数,即这一参数是一个与尺度大小无关的不变量,这个量就是分形集合中的分数维。
分形维度用的是Hausdorff维度[1],我们平时说的是Lesbesgue维度[2]。这两个定义是不同的。
1、分形维数的诞生,告诉了我们自然世界并不是简单的欧几里德维数空间,而是还有更大的非欧几何。同时,有的人说分形几何是自然界的几何,也一定程度上说明了分形几何的维数是一个衡量自然界的图形的变化情况的标准。
2、分形维数实际上相当于是一个尺子的标记,而这个尺子的适用范围比较广,不仅仅是用来求长度。
3、分形维数另外一方面也是一个标准,就是说明这个几何图形的变化情况,
具体定义有能力的话请看维基。
Lesbesgue维度定义在拓扑空间上,而Hausdorff维度定义在测度空间上。
后者可以看作定义了距离的拓扑空间,更特殊。
两者都拓展了维度的定义,后者允许维度为非负实数,前者的维度仍是非负整数。
在分形集合上,经常不同。
平面上的填充曲线,其 Hausdorff 维度,根据定义,等于被填充的方块的维度,等于 2。
⑶ 什么是炒外汇里的分形
炒外汇里面的分形理论,能回答你的人不怎么爱上网^_^国内很多网站列举的分形,很多时候被曲解成切线,切角……很让人遗憾。
事实上的分形理论,我建议先看一本据说普通数学博士未必看得懂的《分形几何学》
补充:我看不懂。
⑷ 分形原理是什么
分形是什么
数千年以来,我们涉及的和研究的主要是欧氏几何。欧氏几何主要是基于中小尺度上,点线、面之间的关系,这种观念与特定时期人类的实践认识水平是相适应的,有什么样的认识水平就有什么样的几何学。当人们全神贯注于机械运动时,头脑中的图象多是一些圆锥曲线、线段组合,受认识主客体的限制,欧氏几何具有很强的“人为”特征。这样说并非要否定欧氏几何的辉煌历史,只是我们应当认识到欧氏几何是人们认识、把握客观世界的一种工具、但不是唯一的工具。
进入20世纪以后,科学的发展极为迅速。特别是二战以后,大量的新理论、新技术以及新的研究领域不断涌现,同以往相比,人们对物质世界以及人类社会的看法有了很大的不同。其结果是,有些研究对象已经很难用欧氏几何来描述了,如对植物形态的描述,对晶体裂痕的研究,等等。
美国数学家B, Mandelbrot曾出这样一个著名的问题:英格兰的海岸线到底有多长?这个问题在数学上可以理解为:用折线段拟合任意不规则的连续曲线是否一定有效?这个问题的提出实际上是对以欧氏几何为核心的传统几何的挑战。
实际上,数学家们很早就认识到,有的曲线不能用欧式几何与微积分研究其长度。但那时解决办法是讨论具备什么条件的曲线有长度。而没有长度的曲线就没有深入研究。
此外,在湍流的研究。自然画面的描述等方面,人们发现传统几何依然是无能为力的。因此就产生一种新的能够更好地描述自然图形的几何学,就是分形几何。
下面是Kohn(克赫)曲线。
谢宾斯奇 (W.Sierpinski,1882-1969)构造了谢氏曲线、地毯、海绵。
皮亚诺(peano)曲线
1975年,Mandelbrot在其《自然界中的分形几何》一书中引入了分形(fractal)这一概念。从字面意义上讲, fractal是碎块、碎片的意思,然而这并不能概括Mandelbrot的分形概念,尽管目前还没有一个让各方都满意的分形定义,但在数学上大家都认为分形有以下凡个特点:
(1)具有无限精细的结构;
(2)比例自相似性;
(3)一般它的分数维大子它的拓扑维数;
(4)可以由非常简单的方法定义,并由递归、迭代产生。
据说,南非海岸线的维数是1.02,英国西岸的维数是1.25。
分形无处不在。
分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1。
在某些电化学反应中,电极附近成绩的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。
自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。
有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。
近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。
计算Kohn每次迭代所得图形的面积与周长。
设第k次迭代后边数是N(k),边长是A(k),周长是L(k),面积是S(k)。有
N(0)=3,A(0)=Sgr(3),L(0)=3*Sgr(3),S(0)=3*Sgr(3)/4,
每次迭代,边数是原来的4倍,即,N(k)=N(k)*4。
边长是原来的1/3,A(k)=A(k-1)/3,
周长是原来的4/3倍,即L(k)=L(k-1)*4/3,
面积S(k)=S(k-1)+N(k-1)*A(k)*A(k)*Sgr(3)/4。
⑸ 股票市场中的分形市场是什么,什么是分形市场
分形市场假说(Fractal Market Hypothesis,FMH )作为现代金融理论基石的有效市场假说(EMH)越来越多地被实践证明不符合现实,而建立在非线性动力系统之上的分形市场假说,利用流动性和投资起点很好地解释了有效市场假说无法解释的各种市场现象。通过定性分析和定量分析表明,有效市场假说只是分形市场假说的一种特殊情况,有效市场只是在某个特定时段才可能出现。但由于分形市场假说在数学建模上的困难,有效市场假说仍具有现实的参考和指导意义。
(l)市场由众多的投资者组成,这些投资者处于不同的投资水平(时间尺度的差异),投
资者的投资水平对其行为会产生重大的影响。可以想像,一个日交易者的投资行为会明显不同于养老基金的投资行为:前者会频繁地做出买或卖的投资决策,而后者则会在较长的时期内保持稳定。
(2)信息对处于不同投资水平上的投资者所产生的影响也不相同。日交易者的主要投资行为是频繁的交易,因此,他们会格外关注技术分析信息,基本分析信息少有价值。而市场中大多数的基本分析者处于长期投资水平上,他们通常认为市场在技术分析层面上所表现出来的趋势并不能用于长期投资决策,只有对证券进行价值评估才可获得长期真实的投资收益。在FMH的框架中,由于信息的影响在很大程度上依赖于投资者自己的投资水平,因此,技术分析和基本分析都是适用的。
(3)市场的稳定(供给和需求的平衡)在于市场流动性的保持、而只有当市场是由处于不同投资水平上的众多投资者组成时,流动性才能够得以实现。投资水平的多样化使得投资者对信息流动有不同的评价,并且可以在某一投资水平投资者不看好市场的时候为市场提供流动性,这是保证市场稳定的关键。
(4)价格不仅反映了市场中投资者基于技术分析所做的短期交易,而且反映了基于基本分析对市场所做的长期估价;一般而言,短期的价格变化比长期交易更具易变性。市场发展的内在趋势反映了投资者期望收益的变化,并受整个经济环境的影响;而短期交易则可能是投资者从众行为的结果。因此,市场的短期趋势与经济长期发展趋势之间并无内在一致性。
(5)如果证券市场与整体经济循环无关,则市场本身并无长期趋势可言,交易、流动性和短期信息将在市场中起决定作用。如果市场与经济长期增长有关,则随着经济周期循环的确定,风险将逐步的降低、市场交易活动比经济循环具有更大的不确定性。从短期来看,资本市场存在分形统计结构,这一结构建立于长期经济循环的基础之上。同时,作为交易市场,市场流通也仅仅具有分形的统计结构。
⑹ 什么是分形
分形理论建立于20世纪70年代末,至今仍鲜为世人所知,但30年来却震惊着世界科学界,被科学界列入20世纪的20项重大科学发现之一。
众所周知,基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而人类"熟悉"却无法描述的自然界许许多多真实的图形竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。现代科学研究面对起伏蜿蜒的山脉、坑坑洼洼的地面、曲曲折折的海岸线、层层分叉的树枝、支流纵横的水系、翻腾变幻的浮云、地壳上的褶皱、密布人体周身的血管、满天闪烁的繁星、撕裂夜空的闪电、魔鬼般跳跃的火焰、船尾湍急的涡流、拍岸的惊涛与浪花、金属和非金属材料的断面、生物的大分子结构、分子光谱分布以及电磁波噪声分布等等,急切要求等到精确和深入的解。在这个传统欧几里得几何学无能为力的领域,分形理论脱颖而出,它的研究和应用成果大放异彩。
目前,分形理论是非线性科学研究中十分活跃的一枝,它的研究对象是自然界和非线性系统中出现的不光滑和不规则的几何形体,分形理论的数学基础是分形几何。什么是分形?分形是对没有特征长度(特征长度是指所考虑的集合对象所含有的各种长度的代表者,例如一个球,可用它的半径作为它的特征长度。)但具有一定意义下的自相似图形和结构的总称。“分形”一词译于英文Fractal,系分形理论的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere,一词创造而成,词本身具有“破碎”和“不规则”两个含义。
⑺ 分形是什么,股市里面的分形,有谁知道
分型通常是指,K线运行的趋势形态。形态的区分有多种性
⑻ 分形理论在K线图技术中的运用
其实分形是一种几何图形的理论运用到股票 债券 外汇等相关证券走势的分析上去,个人认为有点类似股票技术分析的三角形等各种形态的技术分析。分形主要有三分康托集 、Koch 曲线、 Julia 集这几种,其中最后一种涉及函数的计算公式啦,看起来似乎有点深奥,但都是用图形去分析,跟一般的形态技术分析没有什么区别啦。只要有点技术分析的底子都会很容易理解的。
⑼ 什么是分形数学
分1形诞生在以8多种概念和方8法相互8冲击和融合为6特征的当代。分6形混沌之r旋风0,横扫数学、理化1、生物、大f气4、海洋以4至社会学科,在音乐、美术间也w产生了x一g定的影响 分1形所呈现的无w穷玄机和美感引3发人h们去探索。即使您不t懂得其中1深奥的数学哲理,也w会为0之q感动 分0形使人a们觉悟到科学与q艺j术的融合,数学与t艺v术审美上w的统一i,使昨日1枯燥的数学不p再仅6仅8是抽象的哲理,而是具体的感受;不b再仅4仅4是揭示4一g类存在,而是一n种艺t术创作,分5形搭起了i科学与l艺b术的桥梁 “分5形艺o术”与x普通“电脑绘画”不g同。普通的“电脑绘画”概念是用电脑为2工o具从1事美术创作,创作者要有很深的美术功底。而“分4形艺d术”是纯数学产物,创作者要有很深的数学功底,此外还要有熟练的编程技能 2011-10-25 12:13:45
⑽ 分形理论简述
分形几何(Fractal Geometry)的概念是由曼德布罗特(B.B.Mandelbrot.1975)在1975年首先提出的.几十年来,它已经发展成为一门新型的数学分支.这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学,并且实际上正起着把现代科学各个领域连接起来的作用,分形是从新的角度解释了事物发展的本质.
分形(fractal)一词最早由B.B.Mandelbrot于1975年从拉丁文fractus创造出来,《自然界中的分形几何》(Mandelbrot,1982)为其经典之作.最先它所描述的是具有严格自相似结构的几何形体,物体的形状与标度无关,子体的数目N(r)与线性尺度(标度r)之间存在幂函数关系,即N(r)∝1/rD.分形的核心是标度不变性(或自相似性),即在任何标度下物体的性质(如形状,结构等)不变.数学上的分形实际是一种具有无穷嵌套结构的极限图形,分形的突出特点就是不存在特征尺度,描述分形的特征量是分形维数D.不过,现实的分形只是在一定的标度范围内呈现出自相似或自仿射的特性,这一标度范围也就称为(现实)分形的无标度区,在无标度区内,幂函数关系始终成立.
分形理论认为,分形内部任何一个相对独立的部分,在一定程度上都是整体的再现和相对缩影(分形元),人们可以通过认识部分来认识整体.但是分形元只是构成整体的单位,与整体相似,并不简单地等同于整体,整体的复杂性远远大于分形元.更为重要的是,分形理论指出了分形元构成整体所遵循的原理和规律,是对系统论的一个重要的贡献.
从分析事物的角度来看,分形论和系统论体现了从两个极端出发达到对事物全面认识的思路.系统论从整体出发来确立各部分的系统性质,从宏观到微观考察整体与部分的相关性;而分形论则是从部分出发确立整体性质,沿着从微观到宏观的方向展开.系统论强调部分对整体的依赖性,而分形论则强调整体对部分的依赖性,两者的互补,揭示了系统多层次面、多视角、多方位的联系方式,丰富和深化了局部与整体之间的辩证关系.
分形论的提出,对科学认识论与方法论具有广泛而深远的意义.第一,它揭示了整体与部分之间的内在联系,找到了从部分过渡到整体的媒介与桥梁,说明了部分与整体之间的信息“同构”.第二,分形与混沌和现代非线性科学的普遍联系与交叉渗透,打破了学科间的条块分割局面,使各个领域的科学家团结在一起.第三,为描述非线性复杂系统提供了简洁有力的几何语言,使人们的系统思维方法由线性进展到非线性,并得以从局部中认识整体,从有限中认识无限,从非规则中认识规则,从混沌中认识有序.
分形理论与耗散结构理论、混沌理论是相互补充和紧密联系的,都是在非线性科学的研究中所取得的重要成果.耗散结构理论着眼于从热力学角度研究在开放系统和远离平衡条件下形成的自组织,为热力学第二定律的“退化论”和达尔文的“进化论”开辟了一条联系通道,把自然科学和社会科学置于统一的世界观和认识论中.混沌理论侧重于从动力学观点研究不可积系统轨道的不稳定性,有助于消除对于自然界的确定论和随机论两套对立描述体系之间的鸿沟,深化对于偶然性和必然性这些范畴的认识.分形理论则从几何角度,研究不可积系统几何图形的自相似性质,可能成为定量描述耗散结构和混沌吸引子这些复杂而无规则现象的有力工具,进一步推动非线性科学的发展.
分形理论是一门新兴的横断学科,它给自然科学、社会科学、工程技术、文学艺术等极广泛的学科领域提供了一般的科学方法和思考方式.就目前所知,它有很高程度的应用普遍性.这是因为,具有标度不变性的分形结构是现实世界普遍存在的一大类结构,该结构的含义十分丰富,它不仅指研究对象的空间几何形态,而是一般地指其拓扑维(几何维数)小于其测量维数的点集,如事件点的分布,能量点的分布,时间点的分布,过程点的分布,甚至是意识点、思维点的分布.
分形思想的基本点可以简单表述如下:分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的.从分形研究的进展看,近年来,又提出若干新的概念,其中包括自仿射分形、自反演分形、递归分形、多重分形、胖分形等等.有些分形常不具有严格的自相似性,正如定义所表达的,局部以某种方式与整体相似.
分形理论的自相似性概念,最初是指形态或结构的相似性,即在形态或结构上具有相似性的几何对象称为分形,研究这种分形特性的几何称为分形几何学.随着研究工作的深入发展和领域的拓展,又由于一些新学科,如系统论、信息论、控制论、耗散结构理论和协同论等相继涌现的影响,自相似性概念得到充实与扩展,把信息、功能和时间上的自相似性也包含在自相似性概念之中.于是,把形态(结构)、或信息、或功能、或时间上具有自相似性的客体称为广义分形.广义分形及其生成元可以是几何实体,也可以是由信息或功能支撑的数理模型,分形体系可以在形态(结构)、信息和功能各个方面同时具有自相似性,也允许只在某一方面具有自相似性;分形体系中的自相似性可以是完全相似,这种情况是不多见的,也可以是统计意义上的相似,这种情况占大多数,相似性具有层次或级别上的差别.级别最低的为生成元,级别最高的为分形体系的整体.级别愈接近,相似程度越好,级别相差愈大,相似程度越差,当超过一定范围时,则相似性就不存在了.
分形具有以下几个基本性质:
(1)自相似性是指事物的局部(或部分)与整体在形态、结构、信息、功能和时间等方面具有统计意义上的相似性.
(2)适当放大或缩小分形对象的几何尺寸,整个结构并不改变,这种性质称为标度不变性.
(3)自然现象仅在一定的尺度范围内,一定的层次中才表现出统计自相似性,在这样的尺度之外,不再具有分形特征.换言之,在不同尺度范围或不同层次上具有不同的分形特征.
(4)在欧氏几何学中,维数只能是整数,但是在分形几何学中维数可以是整数或分数.
(5)自然界中分形是具有幂函数分布的随机现象,因而必须用统计的方法进行分析和处理.
目前分形的分类有以下几种:①确定性分形与随机分形;②比例分形与非比例分形;③均匀分形与非均匀分形;④理论分形与自然分形;⑤空间分形与分形事件(时间分形).
分形研究应注意以下几个问题:
(1)统计性(随机性).研究统计意义上的分形特征,由统计数据分析中找出稳态规律,才能最客观地描述自然纹理与粗糙度.从形成过程来看,分形是一个无穷随机过程的体现.如大不列颠海岸线的复杂度是由长期海浪冲击、侵蚀及风化形成的,其他许多动力过程、凝聚过程也都是无穷随机的,不可能由某个特征量来形成.因此,探讨分形与随机序列、信息熵之间的内在联系是非常必要的.
(2)全局性.分形是整体与局部比较而存在的,它包括多层嵌套及无穷的精细结构.研究一个平面(二维)或立体(三维)的粗糙度,要考虑全局范围各个方向的平稳性,即区别各向同性或各向异性分布规律.
(3)多标度性.一个物体的分形特性通常是在某些尺度下体现出来,在另一些尺度下则不是分形特性.理想的无标度区几乎不存在,只有从多标度中研究分形特性才较实际.
模型的建立,其实是分形(相似性)模型的建立.利用相似性原理,建立模型单元,对预测单元进行分形处理和预测.
分形的正问题是给出规律,通过迭代和递推过程产生分形,产生的几何对象显然具有某种相似性.反问题叫做分形重构.广义而言,它指任何一个几何上认为是分形的图形,能否找到产生它的规律,以某种方式来生成它.当我们研究非线性动力学时,混沌动力学会产生分形,而分形重构则是动力学系统研究的逆问题.由于存在“一因多果”、“多因一果”,由分维重构分形还需加入另外参数.
临界现象与分形有关.重整化群是研究临界现象的一种方法.该方法首先对小尺寸模型进行计算,然后被重整化至大的或更大的尺度.如果我们有网格状的一组元素,每个元素具有一定的渗透概率,重整化群方法的一个应用就是计算渗透的开始问题.当元素渗透率达到某一临界值时,这一组元素的渗透流动就会突然地发生.一旦流动开始后,相联结元素之间便具有分形结构.
自组织临界现象的概念可以用来分析地震活动性.按照这个概念,一个自然界的系统处在稳定态的边缘,一旦偏离这个状态,系统会自然地演化回到边缘稳定的状态.临界状态不存在天然的长度标度,因而是分形的.简单的细胞自动机模型可以说明这种自组织临界现象.
分形理论作为非线性科学的一个分支,是研究自然界空间结构复杂性的一门学科,可从复杂的看似无序的图案中,提取出确定性、规律性的参量.既可以反演分形结构的形成机制,又可以从看似随机的演化过程(时间序列)中推测体系演化的结果,近年来倍受地球科学家的注意.在地质统计学,孔隙介质、储层非均匀性及石油勘探开发,固相表面或两相界面,岩石破裂、断层及地震和地形、地貌学等地球科学各个领域得到了广泛的应用.
自20世纪80年代初以来,一些专家学者注意到了地质学中的自相似现象,并试图将分形理论运用于地学之中.以地质学中普遍存在的自相似性现象、地质体高度不规则性和分割性与层次性、地质学中重演现象的普遍性、分形几何学在其他学科中应用实例与地质学中的研究对象的相似性、地质学中存在一些幂函数关系等为内在基础,以地质学定量化的需要、非线性地质学的发展及线性地质学难以解决诸多难点、分形理论及现代测试和电算技术的发展为外在基础,使分形理论与地质学相结合成为可能,它的进一步发展将充实数学地质的研究内容并推动数学地质迈上一个新台阶.目前,分形理论应用于地球科学主要包括以下两个方面的研究:
(1)对“地质存在”——地质体或某些地质现象的分形结构分析,求取相应分形维数,寻找分维值与有关物理参量之间的联系,探讨分形结构形成的机理.这方面的研究相对较多,如人们已对断裂、断层和褶皱等地质构造(现象)进行了分形分析,探讨分维值与岩石力学性质等之间的关系;从大到海底(或大陆)地貌,小到纳米级的微晶表面证实了各类粗糙表面具有分形特征;计算了河流网络,断裂网络,地质多孔介质和粘性指进的分维值以及脉厚与品位或品位与储量等之间的分形关系.
(2)对“地质演化”——地质作用过程进行分形分析,求取分形维数并考察其变化趋势,从而预测演化的结果.例如,科学家们通过对强震前小震分布的分形研究表明,强震前普遍出现降维现象,从而为地震预报提供有力理论工具.当今的研究,不仅仅局限于分维数的计算,分形模型的建立;而更着重于解释地质学中引起自相似性特征的原因或成因,自相似体系的生成过程及模拟,以及用分形理论解决地质学中的疑难问题与实践问题,如地震和灾害地质的预报、石油预测、岩体力学类型划分、成矿规律与成矿预测等.地球化学数据在很大程度上反映了地质现象的结构特征.分维是描述分形结构的定量参数,它有可能揭示出地球化学元素空间分布的内在规律.
分维与地质异常有一定的关系.我们可以对不同地段以一定的地质内容为参量对比它们分维大小的差异,以此求得结构地段的位置及范围,从而确定地质异常;也可以对不同时期可恢复的历史地质结构格局分别求分维,还可以确定分维背景值.分形是自然界中普遍存在的一种规律性.
总之,分形理论已经渗透到地学领域的各个角落,应用范围涉及地球物理学、地球化学、石油地质学、构造地质学及灾害地质学等.