导航:首页 > 外汇期货 > 矿物中微量贵金属的测定

矿物中微量贵金属的测定

发布时间:2022-04-19 00:29:59

⑴ 金的纯度是怎样鉴定的怎么会精确到6位

黄金纯度的鉴定:
一、原子吸收光谱法:
1、原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。此法是上世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。该法主要适用样品中微量及痕量组分分析。
2、原子吸收光谱法该法具有检出限低(火焰法可达μg/cm–3级)准确度高(火焰法相对误差小于1%),选择性好(即干扰少)分析速度快,应用范围广(火焰法可分析30多种/70多种元素,石墨炉法可分析70多种元素,氢化物发生法可分析11种元素)等优点。
3、每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC。式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。
4、原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10–10~10–14g。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。
二、火试金法是指通过熔融、焙烧测定矿物和金属制品中贵金属组分含量的方法。
1、取样:样品包括矿物、精制产品、碎屑等,要求细心地采集具有代表性的样品。由于贵金属常以无规则的分散状态存在于矿物中,往往需要用大量的矿物才能取出具有代表性的试样,最后还要将试样仔细地粉碎。
2、熔样:往试样中加入适当的熔剂,例如粉碎的碳酸钠、硼砂、硅酸盐、一氧化铅等,然后加热,使试样和熔剂熔融。一氧化铅还原为金属铅,和贵金属一起沉入容器底部,冷却后变成一种金属小球,其中含有贵金属和大量的金属铅,还有其他金属杂质。反应产生的熔渣弃去。
3、烤钵试金:将含贵金属和铅的金属小球放在利用骨灰(或素烧瓷)制成的烤钵中,然后将烤钵放在一种特制的能提供强氧化气氛的炉子里加热。这时金属小球中的铅和其他金属杂质都被氧化,生成的氧化铅和其他金属氧化物成为炉渣或者浸渍到烤钵的孔隙中,只有金和银没有氧化,仍然保持金属状态,与铅和其他金属的氧化物分开。从炉子里取出烤钵,使它缓慢冷却,所得小球经洗净、烘干后即可当作试样,也可以用锤击或辗压的方法将小球制成薄片状试样。
4、称量:称出含有金和银的试样的重量即可测得金和银的总重量。
5、金银分离:用热的稀硝酸处理含金和银的试样,即可将银溶解。
6、称量:将除去银以后只含金的试样洗净、烘干后再称量,即可测得金的重量。
7、如果要分析试样中的铂系元素就不能使用火试金法,而要用其他的化学分析法。

⑵ 鉴定和研究矿物的其他主要方法简介

鉴定和研究矿物的方法,随工作目的和要求的不同而异(表16-1)。不同的方法各有其特点,它们对样品的要求及所能解决的问题也各不相同。下面仅介绍某些重要方法的简要特点。

1.成分分析方法

此类方法所得结果即为物质的化学成分数据。除经典化学分析系化学方法外,其他常用方法均属物理方法,大多可同时分析多种元素,但一般不能区分变价元素的价态。

1)经典化学分析

此法准确度高,但灵敏度不很高,分析周期长,很不经济。样品要求是重量超过500mg的纯度很高的单矿物粉末。

此法只适用于矿物的常量组分的定性和定量分析。主要用于新矿物种或亚种的详细成分的确定和组成可变的矿物成分变化规律的研究。但不适用于稀土元素的分析。

表16-1 鉴定和研究矿物的主要方法一览表

2)光谱分析

此法准确度较差(尤其是对含量大于3%的常量元素),但灵敏度高,且快速、经济。可测元素达70多种。一次测试即能获得全部主要元素及微量元素的信息。样品要求:仅需数十毫克甚至数毫克的粉末样品。

光谱分析通常用于矿物的微量和痕量元素的定性或半定量分析。特别是对于稀有分散元素也能获得良好的效果。常作为化学分析的先导,以初步了解样品中元素的种类和数量,供进一步分析或研究时参考。

3)原子吸收光谱分析

原子吸收光谱(AAS)分析灵敏度高,干扰少,快速、精确且较经济。可测70多种元素,但一次只能分析一种元素,不宜于定性分析。样品用量少,仅需数毫克粉末样。

AAS主要用于10-6数量级微量元素和10-9数量级痕量元素的定量测定。适宜于测定沸点低、易原子化的金属元素及部分半金属元素。也可进行常量分析。但对稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高温元素的测定的灵敏度较低,对卤族元素、P、S、O、N、C、H等尚不能测定或效果不佳。

4)X射线荧光光谱分析

X射线荧光光谱(XRF)分析准确度较高,成本低,速度快,可不破坏样品。可分析元素的范围为9F~92U。XRF要求数克至十克(一般4~5g,最少可至数十毫克)较纯的粉末样。液态样品也可分析。

XRF用于常量元素和微量元素的定性或定量分析。尤其对稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能测定变价元素的价态。

5)等离子体发射光谱分析

等离子体发射光谱(ICP)分析比光谱分析更为快速和灵敏,检测下限可达(0.1×10-9)~(10×10-9)。精度较高,可达±3%,可测定除H、O、N和惰性气体以外的所有元素。样品要求:粉末,最少可以数毫克,也可以为液态样品。

ICP适用于常量、微量和痕量元素的定性或定量分析。特别宜于分析包裹体中含量极低的重金属离子。

6)激光显微光谱分析

激光显微光谱(LMES)分析灵敏度高,快速,有效,成本低,且被破坏样品的面积小。可测70多种元素。样品可以是光片、不加盖玻璃的薄片或大小合适的手标本,样品表面应抛光,切忌被污染;重砂、粉末或液体样品要作某些处理。

LMES适于微粒、微量、微区的成分测定。用于研究矿物的化学成分及元素的赋存状态,特别适用于微细疑难矿物的分析和鉴定。但是,目前对O、N、S等许多非金属元素尚无法分析,对碱金属、难熔金属(如Mo、Ta等)的检测灵敏度较低。

7)质谱分析

质谱分析灵敏度和准确度均高,且分析速度快。以纯度≥98%、粒径<0.5mm的单矿物为样品。样量视矿物种不同而异,如硫化物需0.1~0.2g,硫酸盐需2~5g。应避免用化学方法、浮选法等处理分离矿物,以防被污染。

质谱分析系10-6数量级定量分析,常用于准确测定各种岩石、矿物和有机物中元素的同位素组成。从10~30g的陨石标本中提取的稀有气体即足以为分析所用。

8)中子活化分析

中子活化分析(NAA)灵敏度高,大多数元素的灵敏度达10-6~10-13g。准确度高,精度高(一般在±1%~±5%)。可测的元素达80多种。可同时测定多种元素,分析速度快,且不破坏样品。样品要求是纯的单矿物粉末,样量仅需数毫克至数十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接测定浓度很低的贵金属元素,对稀土元素的分析特别有效。广泛用于同位素组成、同位素地质年龄的测定。此外,也常用于测定包裹体成分。适用于分析陨石和月岩样品的组成。

9)电子探针分析

电子探针分析(EPMA)灵敏度高,检测下限可达10-16g。精度一般可达1%~2%,但对微量元素的精度则可差于20%。分辨率高(约7nm)。放大倍数为数十倍至数十万倍。分析速度快,直观,且不破坏样品。可测元素的范围大:波谱分析为4Be~92U,能谱分析为11Na~92U。样品可以是光片、不加盖玻璃的薄片或矿物颗粒,且表面必须清洁、平坦而光滑。

EPMA系微米数量级微区的成分分析,宜于常量元素的定量分析。既可定点作定性或定量分析,又能作线扫描和面扫描分析,以研究元素的种类、分布和含量,了解矿物成分分布的均匀程度和元素在矿物中的赋存状态,定量测定矿物内部各环带的成分。最适于微小矿物和包裹体成分的定性或定量分析,以及稀有元素、贵金属元素的赋存状态的研究。此外,还可辅以形貌观察。EP-MA只能分析固态物质,对有机物质的分析有困难;不能分析元素的同位素、各种形式的水(如 H2 O和 OH-等)及其他挥发组分,无法区分 Fe2+和 Fe3+

2.结构分析方法

此类方法一般不破坏样品,其分析结果是各种谱图,用于研究物质的晶体结构、分子结构、原子中电子状态的精细结构。有些还可借以鉴定样品的物相,如宝石学上目前常利用红外吸收光谱、激光拉曼光谱、可见光吸收光谱等技术来鉴别天然宝石和合成宝石。

1)X射线分析

X射线分析是晶体结构研究和物相分析的最常用而有效的方法。其具体方法种类繁多,一般可归为单晶法和粉晶法两类。

(1)单晶法:通常称为X射线结构分析,又有照相法和衍射仪法之分。目前主要采用四圆单晶衍射仪法,其特点是自动化程度高,快速,准确度高。单晶法要求严格挑选无包裹体、无双晶、无连晶和无裂纹的单晶颗粒样品,其大小一般在0.1~0.5mm。因此在应用上受到一定限制。单晶法主要用于确定晶体的空间群,测定晶胞参数、各原子或离子在单位晶胞内的坐标、键长和键角等;也可用于物相鉴定,绘制晶体结构图。

(2)粉晶法:又称粉末法,也有照相法和衍射仪法之分。粉晶法以结晶质粉末为样品,可以是含少数几种物相的混合样品,粒径一般在1~10μm。样品用量少,且不破坏样品。照相法只需样品5~10mg,最少可至1mg左右;衍射仪法用样量一般为200~500mg。粉晶衍射仪法简便,快速,灵敏度高,分辨能力强,准确度高。根据计数器自动记录的衍射图(diffraction diagram),能很快查出面网间距d值和直接得出衍射强度,故目前已广泛用于矿物或混合物之物相的定性或定量分析。粉晶法主要用于鉴别结晶质物质的物相,精确测定晶胞参数,尤其对鉴定粘土矿物及确定同质多象变体、多型、结构的有序—无序等特别有效。

2)红外吸收光谱分析

红外吸收光谱(IR)测谱迅速,数据可靠,特征性强。傅里叶变换红外光谱仪具有很高的分辨率和灵敏度及很快的扫描速度。样品不受物理状态限制,可以是气态、液态、结晶质、非晶质或有机化合物。干燥固体样品一般只需1~2mg,并研磨成2μm左右的样品。

IR已广泛应用于物质的分子结构和成分研究。适用于研究不同原子的极性键,可精确测定分子的键长、键角、偶极矩等参数;推断矿物的结构,鉴定物相;对研究矿物中水的存在形式、络阴离子团、类质同象混入物的细微变化、有序—无序及相变等十分有效。IR广泛用于粘土矿物和沸石族矿物的鉴定,也可对混入物中各组分的含量作定量分析。

3)激光拉曼光谱分析

激光拉曼光谱(LRS)系无损分析,其测谱速度快,谱图简单,谱带尖锐,便于解释。几乎在任何物理条件(高压、高温、低温)下对任何材料均可测得其拉曼光谱。样品可以是粉末或单晶(最好是5mm或更大者),不需特别制备,粉末所需量极少,仅0.5μg即可。也可以是液体样品(10-6ml)。

LRS和IR同为研究物质分子结构的重要手段,两者互为补充。LRS适用于研究同原子的非极性键的振动。

4)可见光吸收光谱分析

可见光吸收光谱分析简便、可信,不需挑选单矿物,不破坏样品。以0.03mm标准厚度的薄片为样品,但研究多色性时则需用单晶体。

此法主要用于研究物质中过渡元素离子的电子构型、配位态、晶体场参数和色心等。也常用于颜色的定量研究,探讨透明矿物的呈色机理。可适于研究细小(粒径在1~5mm)的矿物颗粒。

5)穆斯堡尔谱分析

穆斯堡尔谱分析又称核磁伽马共振(NGR)。分析准确、灵敏、快速,解谱较为容易。目前仅可测40多种元素近90种同位素。所研究的元素可以是主成分,也可是含量为万分之几的杂质。样品可以是晶质或者非晶质;既可是单晶,也可是矿物或岩石的粉末。但样品中必须含有一定浓度的与放射源中γ射线的核相同的元素。含铁矿物样品中Fe原子浓度为5mg/cm2为宜,硅酸盐样品量一般为100mg左右,因样品中Fe含量等因素而异。

NGR主要用于研究57Fe和119Sn元素离子的价态、配位态、自旋态、键性、磁性状态、占位情况及物质结构的有序—无序和相变等,也可用于物相鉴定和快速成分分析。对粘土矿物及陨石、月岩、海底沉积物等晶质多相混合物的研究很有效。

6)电子顺磁共振分析

电子顺磁共振(EPR)分析也称电子自旋共振(ESR)分析。灵敏度高。不破坏样品。只适于研究顺磁性离子:室温下能测定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多数稀土元素离子则只能在低温下测定。EPR分析对样品要求不高:固体、液体(0.1~0.01ml)、压缩气体或有机化合物均可;可以是单晶,也可以是粉末多晶混合物,但一般以单晶(粒径在2~9mm)为好。样品中顺磁性离子的浓度不超过1%,以0.1%~0.001%为宜。样品不需任何处理。

EPR主要用于研究过渡金属离子(包括稀土元素离子)的微量杂质的价态、键性、电子结构、赋存状态、配位态、占位情况、类质同象置换及结构的电子—空穴心、结构的有序—无序、相变等。也可作微量元素的定性或定量分析及地质年龄的测定等。在宝石学上,常用于鉴别天然宝石与合成宝石及研究宝石的染色机制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振仪广泛应用于某些分子结构的测定,其分辨率高,灵敏度高,测量速度快。但可测元素的种类有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。样品可以是较浓的溶液(约0.5ml)、固体(一般20~80mg)或气体。

NMR主要用于研究矿物中水的存在形式、质子的结构位置及离子的键性、配位态和有序—无序分布特征等,研究相变和晶格缺陷。

3.其他测试方法

1)透射电子显微镜分析

透射电子显微镜(TEM)分析的功能主要是利用透射电子进行高分辨的图象观察,以研究样品的形貌、晶格缺陷及超显微结构(如超显微双晶和出溶片晶等)等特征,同时用电子衍射花样标定晶体的结构参数和晶体取向等。配有能谱仪(或波谱仪)者尚可进行微区常量元素的成分分析。TEM具有很高的分辨率(达0.1nm左右)和放大倍数(为100倍~200万倍),可以直接观察到原子。样品可以是光片、不加盖玻璃的薄片或粉末样,表面须平坦光滑。

2)扫描电子显微镜分析

扫描电子显微镜(SEM)分析的主要功能是利用二次电子进行高分辨率的表面微形貌观察。通常也辅以微区常量元素的点、线、面扫描定性和定量分析,查明元素的赋存状态等。SEM的分辨率高(达5nm左右),放大倍数为10倍~30万倍。样品可以是光片、不加盖玻璃的薄片、粉末颗粒或手标本。其制样简单,图象清晰,立体感强,特别适合粗糙表面的研究,如矿物的断口、晶面的生长纹和阶梯等观察及显微结构分析等。

3)微分干涉(相衬)显微镜分析

微分干涉(相衬)显微镜(DIC)能够观察矿物表面纳米数量级的分子层厚度。反射型显微镜用于研究晶体表面微形貌,观察晶体表面上的各种层生长纹和螺旋生长纹,从而探讨晶体的生长机制;透射型显微镜用于研究岩石薄片中矿物的结晶状态及内部显微构造,能清晰看到微米数量级的微裂纹,从而有助于研究岩石受应力作用的方向和性质。微分干涉(相衬)显微镜的纵向分辨率高,立体感强。其样品可以是带晶面的晶体颗粒或者薄片。

4)热分析

热分析系根据矿物在加热过程中所发生的热效应或重量变化等特征来鉴定和研究矿物。广泛采用的有差热分析和热重分析。

(1)差热分析(DTA):是测定矿物在连续加热过程中的吸热(脱水、分解、晶格的破坏和类质同象转变等)和放热(氧化、结晶等)效应,以研究矿物的结构和成分变化。用于了解水的存在形式,研究物质的内部结构和结晶度,研究类质同象混入物及其含量,可进行物相的鉴定及其定量分析。尤其对粘土矿物、氢氧化物和其他含水矿物及碳酸盐类等矿物的研究最为有效。DTA只适用于受热后有明显的物理、化学变化的物质,一般仅用于单相物质纯样的研究,样量仅需100~200mg,粒度在0.1~0.25mm。DTA设备简单,用样量少,分析时间较短,但破坏样品,且干扰因素多,混合样品不能分离时会相互干扰。因此,必须与X射线分析、电子显微镜、化学分析等方法配合使用。

(2)热重分析(TG):是测定矿物在加热过程中质量的变化。热重曲线的形式取决于水在矿物中的存在形式和在晶体结构中的存在位置。TG仅限于鉴定和研究含水矿物,并可确定其含水量。TG以纯的矿物粉末为样品,样量一般需2~5g,且破坏样品。TG常与DTA配合使用。目前正向微量(10-5g)分析发展。

⑶ 任务金矿石中金含量的测定

——泡沫塑料富集原子吸收光度法

任务描述

金在矿石中的含量一般较低,大概以0.xx~x.xxg/t计,在检测时通常需要先采用富集的方法,火试金以铅试金为主,湿法富集有泡沫塑料富集和活性炭富集等方法;然后采用原子吸收分光光度法进行测定。通过本次任务的学习,明白泡沫塑料富集金实验条件,掌握泡沫塑料富集金的操作方法;能够正确填写数据记录表格,正确填报实验结果。

任务实施

一、仪器和试剂准备

(1)仪器:原子吸收分光光度计,金空心阴极灯。

(2)泡沫塑料:将100g聚氨酯软质泡沫塑料(厚度约5mm)浸于400mL三正辛胺乙醇(3%)溶液中,反复挤压使之浸泡均匀,然后在70~80℃温度下烘干,剪成0.2g左右小块备用(一周内无变化)。

(3)硫脲-盐酸混合溶液:含5g/L硫脲的盐酸(2%)溶液。

(4)金标准溶液:称取0.1000g纯金置于50mL烧杯中,加入10mL王水,在电热板上加热溶解完全后,加入5滴氯化钠(200g/L)溶液,于水浴上蒸干,加2mL盐酸蒸发到干(重复3次),加入10mL盐酸温热溶解后,用水定容至100mL,此贮备液含金1mg/mL。取该溶液配制含金至100μg/mL及10μg/mL的标准溶液[盐酸(10%)介质]。

二、分析步骤

称取5~30g试样于瓷舟中,在550~650℃的高温炉中焙烧1~2h,中间搅拌2~3次,冷后移入300mL锥形瓶中,加入50mL王水(1+1),在电热板上加热近沸约1h(如含锑、钨时,应加入1~2g酒石酸,含酸溶性硅酸盐应加入5~10g氟化钠,煮沸),用水稀释至100mL,加入约0.2g泡沫塑料(预先用水润湿),用胶塞塞紧瓶口,在往复式振荡机上振荡30~90min,取出泡沫塑料,用自来水充分洗涤,然后用滤纸吸干,放入预先加入25mL硫脲-盐酸混合液的50mL比色管中,在沸水浴中加热15min,用玻璃棒将泡沫塑料挤压数次,取出泡沫塑料,将溶液定容到50mL,按仪器的工作条件,用原子吸收光谱法测定。随同试样做试剂空白试验。

工作曲线的绘制:吸取2.50mL、5.00mL、10.00mL、15.00mL、20.00mL含金10μg/mL的金标准溶液于50mL容量瓶中,25mL硫脲溶液(10g/L),以水定容;按试样相同条件,用原子吸收光谱法测定。

三、分析结果计算

样品中金的含量按下式计算:

岩石矿物分析

式中:w(Au)为金的质量分数,μg/g;m1为从校准曲线上查得试样溶液中金的质量,μg;m0为从校准曲线上查得试样空白中金的质量,μg;m为称取试样的质量,g。

四、质量表格填写

任务完成后,填写附录一质量表格3、4、7。

任务分析

一、方法原理

试样用王水分解,在约10%(体积分数)王水介质中,金用负载三正辛胺的聚氨酯泡沫塑料来吸附,然后用5g/L硫脲-2%(体积分数)盐酸溶液加热解脱被吸附的金,直接用火焰原子吸收光谱法测定。

二、方法优点

聚氨酯泡沫塑料分离富集金,萃取容量大、选择性好、回收率高(97% 以上)。该法操作简单快速、稳定性好、易于掌握、成本低,适用于大批量生产样品的分析。

三、泡沫塑料分离富集方法简介

泡沫塑料(PF,简称泡塑)属软塑料,为甲苯二异氰酸盐和聚醚或聚酯通过酰胺键交联的共聚物。

泡沫塑料已经广泛应用于贵金属的分离和富集。其分离与富集的机理可能包括表面吸附、吸附、萃取、离子交换、阳离子螯合等。泡塑吸附金属的效能取决于泡塑及金属配离子的类型、性质和配离子在溶液中的形成环境、扩散速度以及吸附方式。泡塑由于含有聚醚氧结构,适宜接受一价和二价的配阴离子,它的吸附行为与阴离子交换树脂的类似,故其吸附具有选择性。Au、Tl等以离子形式存在时,几乎不被泡塑吸附,只有成[MeX4-型配阴离子时才能被吸附。

泡塑主要用于金的吸附分离。不同厂家生产的泡沫塑料的质量、结构和性质有差异,对金的吸附容量也不相同,通常在50~60mg/g之间。泡塑吸附的方式分为动态吸附和静态吸附。静态吸附是将泡塑块投入含金溶液中振荡吸附金。动态吸附是将泡塑做成泡塑柱,金溶液流入柱中进行吸附。王水浓度在(4+96)~(15+85)范围内对吸附无明显影响,当王水浓度低于(2+98)时略有偏低;当王水浓度大于(1+4)时,泡塑发黑。溶液体积在50~200mL对吸附无影响,振荡时间30min可以基本吸附完全。用0.4 g泡塑对20~100μg的金进行吸附,吸附率可达98% 以上。

动态吸附率稍高于静态吸附。泡塑在王水(1+9 )介质中吸附金,吸附率可达99%以上,其吸附流速可在较大范围内变化,以小于10mL/min为宜。

将萃取剂或螯合剂负载在泡塑上制备得到的负载泡塑兼有萃取和泡塑吸附两种功能,因而对金具有更大的富集能力。负载泡塑的吸附性质取决于负载在泡塑上萃取剂的种类和性质。目前,在金的分析测定中应用最广泛的载体泡塑有:磷酸三丁酯(TBP)泡塑、三正辛胺泡塑、双硫腙泡塑、甲基异丁酮泡塑、二正辛基亚砜泡塑、二苯硫脲泡塑、三苯基膦泡塑、酰胺泡塑以及将活性炭和泡沫塑料两种富集分离方法相结合而制备的充炭泡塑。其中,以二苯硫泡塑、三正辛胺泡塑、二正辛基亚砜泡塑、双硫腙泡塑富集金的性能较好。

吸附完后,需要对金进行解吸,通常解吸有以下一些方法:

1.灰化灼烧法

将吸附金的泡沫塑料用滤纸包好,置于30mL瓷坩埚中灰化、灼烧。取出冷却后,加2滴氯化钾溶液(200g/L)、3mL王水,在水浴上蒸干。然后再加入10滴浓盐酸,再次蒸干以除去硝酸。然后用光度法或原子吸收光谱法测定。

2.硫脲解吸法

当吸附金的泡沫塑料浸泡于硫脲热溶液中,此时硫脲将Au(Ⅲ)还原为Au(Ⅰ),并形成Au(Ⅰ)硫脲配合物,其反应式为:

R-AuCl4+3SC(NH22+H2O→Au2SC(NH22+RCl+2HCl+OC(NH22

故金离子即能从泡沫塑料上被洗脱。硫脲解吸金的条件是:酸度以中性溶液或小于0.5mol/L盐酸溶液为好。当盐酸浓度大于0.5mol/L时,容易析出单体硫而使结果偏低,从反应式可以看出,盐酸的存在显然对解吸是不利的。在常温下,硫脲解吸金的能力较低,4 h不能使金解吸完全,而在沸水浴中保温20min 即可使金解吸完全,回收率可达95% 以上。保温时间在20~90min不影响结果。硫脲的浓度为10~50g/L,通常采用20~30g/L。该法操作简单快速,成本较低。适用于原子吸收光谱直接测定。

3.硝酸-氯酸钾(HNO3-KClO3)分解法

泡沫塑料能够被氧化性无机酸和氧化剂所分解。采用HNO3、H2SO4-KMnO4、HNO3-H2O2、HNO3-HClO4、HNO3-KClO3等分解泡沫塑料试验表明,其中以HNO3-KClO3分解效果最佳。在HNO3-KClO3的作用下,泡沫塑料很快变成棕黑色块状体,软化后而溶解,并析出黄色油脂状物质浮在溶液表面。加热则发生剧烈的反应而放出大量的NO2气体。对于0.2~0.3 g泡沫塑料,硝酸用量在8mL以上,氯酸钾在0.05 g以上,足使泡沫塑料分解完全,最后得到黄色清亮的溶液。

4.甲基异丁基酮(MIBK)解吸法

MIBK是金的有效萃取剂。利用MIBK的萃取性能可以将泡沫塑料吸附的金解吸。利用20mL MIBK,剧烈振荡2min,金的回收率可达95%~100%。

四、铅试金法富集矿石中的金

经典的火法试金-铅试金法应用于金和银富集已有悠久历史,方法也比较完善。20世纪初开始尝试用经典的铅试金法来富集样品中的铂族金属。由于铂族金属在自然界中比金、银更为稀少,故富集效果较差。为此50年代末期,相继出现了铜镍试金法、锡试金法、镍锍试金法和锑试金法。火法试金作为可靠的方法被长期广泛采用,这是因为火法试金取样量大,一般取20~40g,有时多至100g以上,这样既减少了称样误差,又使结果具有较好的代表性。同时火试金的富集倍数很大(105倍以上),能将几十克样品中的贵金属富集于几毫克的试金合粒中,而且合粒的成分简单,便于后续测定。但火试金法也有其缺点:需要庞大的设备;又要求在高温下进行操作,劳动强度大,在熔炼过程中产生大量的氧化铅等蒸汽,污染环境。所以分析工作者多年来一直想找到一种新的方法,取而代之。近年来在这方面已有所进展,有的方法可以与火法媲美,但对不同性质的样品适应性不如铅试金。所以铅试金仍被各实验室用于例行分析或用以检查其他方法的分析结果。

铅试金的整个过程,可以分为配料、熔炼、灰吹、分金等几个步骤。不同种类的样品,其配料方法和用量比不一样。根据配料的不同,铅试金又可分为面粉法、铁钉法、硝石法等。面粉法以小麦粉作还原剂。铁钉法以铁钉为还原剂,铁钉还可以作为脱硫剂,用于含硫高的试样。硝石法是以硝酸钾作为氧化剂,用于含大量砷、碲、锑及高硫的试样分解,此法不易掌握,一般不常用。常用的为面粉法,它用面粉把氧化铅还原为铅,使铅和贵金属形成合金,与熔渣分离。

1.配料

在熔炼前要在试样中加入一定量的捕集剂、还原剂和助熔剂等。

(1)捕集剂:铅试金以氧化铅为捕集剂。在熔炼过程中,氧化铅被还原剂还原为金属铅,它能与试样中的贵金属生成合金,一般称“铅扣”,与熔渣分离。

对氧化铅的纯度要求不严,只要是不含贵金属的氧化铅如密陀僧等,就可以采用。

(2)还原剂:加入还原剂是为了使氧化铅还原为铅。可用炭粉、小麦粉、糖类、酒石酸、铁钉(铁粉)、硫化物等,国内多采用小麦粉。

(3)助熔剂:常采用的助熔剂有玻璃粉、碳酸钠、氧化钙、硼酸、硼砂、二氧化硅等。根据样品的成分,加入不同量的这些助熔剂,可降低熔炼温度,使熔渣的流动性比较好,铅扣和熔渣容易分离。

配料是铅试金的一个关键步骤,配料不恰当会使铅试金失败。配料是根据试样的种类,按一定比例称取捕集剂、还原剂、助熔剂的细粉和试样混合均匀。各实验室的配料比例不完全相同,仅略有差异。

试样和各种试剂应当混合均匀,使熔炼过程还原出来的金属铅珠能均匀地分布在试样中,发挥溶解贵金属的最大效能。混匀的方法有下列四种:

(1)试样和各种试剂放在试金坩埚中,用金属匙或刮刀搅拌均匀;

(2)在玻璃纸上来回翻滚混合均匀,连纸一起放入试金坩埚中。把玻璃纸的还原力也计算进去,少加些小麦粉等;

(3)把试样和各种试剂称于一个广口瓶中,加盖摇匀,然后倒入试金坩埚中;

(4)将试样和各种试剂称于重1g,长、宽各30cm的聚乙烯塑料袋中,缚紧袋口,摇动5min,即可混匀。然后连塑料袋放入试金坩埚中。配料时应把塑料袋的还原力计算进去,减少还原剂的用量。

2.熔炼

将盛有混合料的坩埚放在试金炉中,加热。于是,氧化铅还原为金属铅;它捕集试样中的贵金属后,凝聚下降到坩埚底部,形成铅扣。这个过程称为熔炼。熔炼过程应控制形成的铅扣的大小和造渣情况,并防止贵金属挥发损失。

常用的试金炉有柴油炉、焦炭炉和电炉三种,以电炉较为方便。

试样和各种试剂的总体积不要超过坩埚容积的四分之三,根据配料多少可以采用不同型号的坩埚。在坩埚中的混合料上面覆盖一层食盐或硼玻璃粉,以防止爆溅和贵金属的挥发,并防止氧化铅侵蚀坩埚。坩埚放进试金炉后,应慢慢升高温度,以防水分和二氧化碳等气体迅速逸出,造成样品的损失。升温到600~700℃后,保持30~40min,使加入的还原剂及试样中的某些还原性组分与氧化铅作用生成金属铅,铅溶解贵金属形成合质金。然后升温至800~900℃,坩埚中的物料开始熔融,渐渐能流动。反应中产生的二氧化碳等气体逸出时,对熔融物产生搅拌作用,促使铅更好地起捕集和凝聚作用。铅合金的密度大于熔渣,逐渐下降到坩埚底部。最后升温到1100~1200℃,保持10~20min,使熔渣与铅合金分离完全。取出坩埚,倒入干燥的铁铸型中。当温度降到700~800℃时,用铁筷挑起熔渣,观察造渣情况,以便改进配料比。若造渣酸性过强,则流动性较差,影响铅的沉降;若碱性过强,则对坩埚侵蚀严重,可能引起坩埚穿孔,造成返工。

熔融体冷却后,从铁铸型中倒出,将铅扣上面的熔渣弃去,把铅扣锤打成正方体。所得铅扣量最好在25~30g之间,以免贵金属残存在熔渣中。如铅扣过大(大于40g)或过小(小于15g),应当返工。铅扣过大,说明配料时加的还原剂太多;铅扣太小,说明加入的还原剂太少。所以重做时应当适当地减少或增加还原剂的用量。根据还原剂的还原力,计算出应补加或减少多少还原剂。

还原剂还原力的计算方法:若所用还原剂为纯碳粉,它和氧化铅在熔炼过程发生下列反应:

2PbO+C→2Pb+CO2

由反应式可以计算出1 g碳能还原氧化铅生成34 g铅。

假设用蔗糖作还原剂,反应如下:

24PbO+C12H22O11→24Pb+12CO2+11H2O

根据反应式可计算出1 g蔗糖能还原氧化铅生成14.0 g铅。试金工作者常称:蔗糖的还原力为14.0 g;碳的还原力为34 g;小麦粉的还原力为10~12 g;粗酒石酸的还原力为8~12 g等。

试样的组成是复杂的,有的具有氧化能力,有的具有还原能力。有还原能力的试样应当少加还原剂;有氧化能力的试样应当多加还原剂。例如含有硫化物的试样,应当少加还原剂,因为硫化物能作用如下:

3PbO+ZnS→ZnO+SO2+3Pb

遇到陌生的样品,难以确定配料比时,可以通过化验测定各种元素的含量,或通过物相分析测定出主要矿物组分的含量,也可以进行试样的氧化力或还原力的试验,以决定配料的组成和比例。

锤击铅扣时,如果发现铅扣脆而硬,这就表示铅扣中含有铜、砷或锑等。遇到这种情况,需要少称样,改用硝酸钾配料,重新熔炼。

矿石和团岩矿物的主要造渣成分为:SiO2、FeO、CaO、MgO、K2O、Na2O、Al2O3、MnO、CuO、PbO等。这些氧化物中,除了很少的氧化物能单独在试金炉温度下熔融外,大多数不熔,因而需要加入助熔剂。若为酸性氧化矿石应当加入碱性助熔剂;碱性氧化矿石则应加入酸性助熔剂,硫化物样品可加铁钉或铁粉助熔。

3.灰吹

灰吹的作用是将铅扣中的铅与贵金属分离。铅在灰吹过程中,被氧化为氧化铅,然后被灰皿吸收;而贵金属不被氧化,呈圆球体留在灰皿上,与铅分离。

灰皿是由骨灰和水泥加水捣和在压皿机上压制而成的。含骨灰多的灰皿吸收氧化铅的性能较好,但灰皿成型较困难。应由具体试验确定水泥和骨灰的比例。灰皿为多孔性、耐高温、耐腐蚀的浅皿,重约40~50g,使用前,将清洁的灰皿放在1000℃以上的高温炉中,预热10~20min,以驱除灰皿中的水分和气体。加热后,如发现灰皿有裂缝,应当弃去不用。降温后,将铅扣放于灰皿中央,加热至675℃,铅扣熔融显出银一样的光泽。微微打开炉门(注意:不要大开炉门,以防冷空气直接吹到灰皿上,使铅的氧化作用太激烈,发生爆溅现象)。这时铅被氧化成氧化铅,氧化铅逐渐由铅扣表面脱落下来,被灰皿吸收。铜、镍等杂质被氧化为氧化铜和氧化镍等,对灰皿也有湿润作用,并渗透到灰皿中。

灰吹温度不宜太高,应控制在800~850℃,使铅恰好保持在熔融状态。若温度过低,氧化铅与铅扣不易分离。氧化铅将铅扣包住,可使铅立即凝固,这种现象叫作“冻结”。凝固后再进行加温灰吹,会使贵金属损失加大。合适的温度能使氧化铅挥发至灰皿边沿上,出现羽毛状的结晶;若羽毛状氧化铅结晶出现在灰皿表面上,则说明温度太低。

微量的杂质如铜、铁、锌、钴、镍等,部分转变为氧化物被灰皿吸收,还有部分挥发掉。铅也是如此,大部分成为氧化铅被灰皿吸收,小部分挥发掉。贵金属大都不被氧化。例如金、银、铂、钯等,它们的内聚力较强,凝集成球状,不被灰皿吸收,也不挥发。在铅扣中的铅几乎全部消失后,可以看到球面上覆盖着一个彩虹镜面(或称辉光点)。随后这个彩虹镜面消失,圆球变为银灰色。将炉门关闭2min,进一步除去微量残余的铅后,再取出灰皿冷却。若不经过2min的除铅过程,则在取出灰皿时,因微量的余铅激烈氧化发生闪光,会造成贵金属的损失。

炉温过高也会造成贵金属的损失。虽然金、银、铂、钯等挥发甚微,但在高温下,它们会部分地被氧化而随氧化铅渗入灰皿中。灰吹过程温度愈高,金、银、铂、钯的损失愈大,所以应当严格控制温度在800~850℃。

4.分金与称量

分金是指将火法试金得到的金属合粒中的金和银分离的过程,它适用于金和银的重量法测定。若所得金银合粒中只有金和银,利用银溶液溶于热稀硝酸而金不溶的特性,将金和银分开。

分金用的硝酸不能含有盐酸和氯气等氧化剂。

5.铅试金中铂族元素的行为

铂族元素在铅试金中表现的行为很复杂,如钌与锇在熔炼过程及灰吹过程容易被氧化成四氧化物而挥发,所以用铅试金法测定钌和锇是困难的。

铱在铅试金的熔炼过程中,不与铅生成合金,而是悬浮在熔融的铅中。所以当铅扣与熔渣分离时,铱的损失很严重。在灰吹过程中,铑不溶于银,氧化损失严重。因此,铱、铑采用铅试金分离富集,是不合适的。

铂、钯在铅试金中的行为与金相似,在熔炼过程溶于铅,在灰吹过程溶于银,在熔炼和灰吹过程都损失甚微。只有含镍的样品使铂、钯损失严重,可以改用锍试金及锑试金进行分离和富集。

6.金与银、铂、钯的分离

若试祥中有金、银、铂、钯,则进行铅试金时,灰吹后得到的合粒为灰色。含铂、钯量较大时,在灰吹过程中,铅未被完全氧化并被灰皿吸收之前,熔珠可能发生“凝固”,得到的金属合粒表面粗糙。

金属合粒中的银比铂、钯多10倍以上时,须用稀硝酸分金多次。铂、钯可以随银完全溶于酸而与金分离。将残留的金洗涤、烘干、称量,得到金的测定结果。

分离金以后的酸性溶液,加热蒸发除酸,通入硫化氢将银沉淀。硫化银可以将铂、钯等硫化物一起沉淀下来。将沉淀用薄铅片包裹起来,再进行灰吹。得到的金属合粒用浓硫酸加热处理,银溶而铂、钯不溶,因此得以分离。

也可以用王水溶解上述硫化物。加入氨水,若有不溶残渣,过滤除去。将滤液蒸干,加水溶解后,加入饱和氯化钾酒精溶液,静置,使铂形成K2[PtCl6]沉淀,用恒重的玻璃砂芯漏斗过滤。用80% 酒精洗涤后,放在恒温箱中干燥,然后称重。这个方法只适用于含铂高的样品。银、铂、钯也可以在同一溶液中用原子吸收分光光度法或发射光谱分析法进行测定。

7.铅试金中常见矿石配料

铅试金中常见矿石配料见表7-2。

表7-2 铅试金中常见矿石配料表

续表

8.提高试金结果准确度的几项要素

试金分析的全过程有繁杂的手工操作,看起来似乎是个粗糙的过程,但实际上操作中的每一步都必须认真仔细。为提高分析结果的准确度,除了按操作规程认真操作外,还必须从下述几个方面着手并尽力实现之,方可达到目的。

(1)灰皿材料及制作。灰皿材料宜使用动物骨灰、水泥或镁砂。使用500 号水泥加10%~15% 的水压制成水泥皿,自然干燥后使用,由于水泥皿的空隙较粗大,灰吹时的贵金属损失较大,合粒与水泥皿亦易黏结,故分析误差较大,一般只是在骨灰缺乏时用于厂内部周转料的分析。使用动物骨灰,最好是牛羊骨烧成骨灰,然后碾成0.175 mm以下,加10%~15% 的水压制成骨灰皿,自然干燥3 个月后使用。在灰吹前先将灰皿放入马弗炉内于900℃左右烧20min以除去可能存在的有机物。

由于在灰吹过程中氧化铅及贱金属氧化物除少量进入空气挥发外,绝大部分要被灰皿吸收。灰皿对金、银也有一些吸收,即所谓金、银损失。因此,不言而喻,灰皿制作时的压力差异必然造成灰皿空隙的差异,从而造成金的灰吹损失的差异,增大了分析误差。这就要求同一批材料来源的骨灰粉要用相同的压力加工;在人力加工的条件下,同一盒灰皿要由同一个人加工;在灰皿将要用完的情况下,不要在不同盒的灰皿中挑选,以免造成分析误差的扩大。更不能将不同来源的骨灰材料灰皿混批使用。

(2)火试金对马弗炉的通风要求及补偿措施。灰吹过程实际上是样品中的贱金属和铅在高温下的氧化过程,因此要求灰皿中熔融的物料与空气有均匀的接触机会,以保证氧化速度的一致,最理想的是铅扣同时熔化,以同样的速度灰吹,同时完成即同时达到辉光点。这就要求马弗炉有合适的进出气孔道。由于一般使用的马弗炉不可能是理想的,除在设计制作时应进行改进外,应考虑到炉内不同位置接触空气的差异和温度差异,对不同区域的样品应使用相应的标准进行补正,其原则是尽量使标准能代表样品。

实验指南与安全提示

三正辛胺在酸性溶液中能与某些金属配阴离子进行交换反应,泡沫塑料对一些有机和无机物质具有吸附性能,因此用负载三正辛胺的泡沫塑料更增强了对[AuCl4-1的吸附性能,而且经水多次洗涤不被洗掉,对0.5~1000μg的金,吸附回收率为96%~100%。

本法吸附金的酸度范围较宽,即0.5~6mol/L盐酸或5%~30%(体积分数)王水介质都能定量吸附金;但硝酸浓度太大时,使金的吸附率下降。

在非纯标准的情况下,金的吸附速度随金品位的降低和试样数量的增加而降低,如30g含金0.0xg/t的样品,振荡吸附时间需延长至90min,一般样品振荡吸附30min即可。

在不加酒石酸和氟化钠时,可允许20mg锑,10mg钨,4000mg铁及小于200mg的可溶性二氧化硅存在。加入1 g酒石酸,可消除300mg锑,100mg钨的干扰。加入5 g氟化钠,可允许5000mg铁存在。可溶性二氧化硅需加入4.2 g氟化钠,使之生成氟硅酸钠晶体沉淀而消除干扰。

对含砷量高的试样,焙烧时应从低温开始,逐渐升高温度,至480℃时保持1~2h,使砷挥发,然后再升高温度继续焙烧除硫,否则由于形成低沸点的砷-金合金而挥发,造成金的损失,导致测定结果偏低。

除钨、锑、铁和酸溶性硅酸盐影响吸附和测定外,矿石中大量其他共存元素均无干扰。钨、锑的干扰用加入酒石酸消除,大量铁和一定量酸溶性硅酸盐的干扰可加入氟化钠使之生成氟硅酸钠(Na2SiF6)晶体沉淀而消除。

金标准溶液的保存:Au3+浓度为2.5~25μg/mL 的溶液,盛于玻璃容器中可稳定300 d。金的浓度更低时,可被玻璃器皿吸附。当pH=2 时,吸附金的量最多,玻璃器皿吸附约30%,石英器皿吸附约60%;当pH=2~7 时,滤纸吸附金高达40%,因此,制备金的标准溶液时,不能用滤纸过滤。为了提高[AuCl4-的稳定性,有人建议在金的标准溶液中加入NaCl、KCl和碱土金属的氯化物。

拓展提高

ICP-MS法测定矿样中的金

1.方法原理

试样经800℃灼烧后,王水溶解,以氩等离子体激发,ICP-MS法测定。

2.试剂与设备

硝酸(ρ=1.42g/mL)、盐酸(ρ=1.19g/mL)、铊标准溶液(1mg/mL):国家标准溶液GSB G62070-90。

铊内标工作液:移取铊标准溶液2.5mL于2000mL容量瓶中,加入250mL王水,以水稀释至刻度,混匀,此标准溶液含铊0.25μg/mL。

金标准贮备液:称取1.000 g纯金(纯度大于99.99%,使用前擦去表面氧化层)于250mL烧杯中,加入100mL水,60mL王水,加热分解清亮,冷却,移入1000mL容量瓶中,以水稀释至刻度,混匀。此标准溶液含金1mg/mL。

金标准工作液:移取金标准贮备液2.50mL于100mL容量瓶中,加入1mL王水,以水稀释至刻度,混匀。此标准溶液含金25μg/mL。

标准溶液的配制:移取金标准工作液0.00、1.00、2.00、4.00mL于一系列100mL容量瓶中,加入铊内标工作液 10mL,用水定容,溶液中含金分别为 0.00,2.50,5.00,10.00μg/L。

氩气(>99.99%)。

分析天平:感量0.0001 g。

等离子体质谱仪:ELAN9000。

3.分析步骤

按表称取两份试样,置于75mL蒸发皿中,在800℃灼烧2 h。移入500mL烧杯中,加入20mL盐酸,加热5min,加入50mL王水,加热浓缩体积至10~20mL,取下,冷却,加热分解清亮,冷却,移入200mL容量瓶中,以水稀释至刻度,混匀,按下表分取试液。

表7-3 分取量

移取样品1.00mL加入已预先加5mL铊内标的50mL容量瓶中,用水定容,混匀,将标准溶液和试液依次进行ICP-MS测定。测量元素同位素质量数:Au 197,Tl 205。

⑷ 任务铜精矿中铜的测定

——碘量法

任务描述

铜矿石中的铜,其含量变化幅度较大,涉及的测定方法也较广泛。目前对高、中含量的铜的测定多采用碘量法。碘量法已被列为铜精矿测定铜的国家标准方法(GB/T3884.1-2012 )。铜精矿分析一般要求测定铜、金、银、硫、氧化镁、氟、铅、锌、镉、镍、砷、铋、锑、汞等项目。本任务旨在通过实际操作训练,学会碘量法测定铜精矿中铜含量,熟练运用酸分解法对试样进行分解;能真实、规范记录原始记录并按有效数字修约进行结果计算。

任务实施

一、仪器和试剂准备

(1)玻璃仪器:酸式滴定管、锥形瓶、容量瓶、烧杯。

(2)铜片(≥99.99%):将铜片放入微沸的冰乙酸(ρ=1.05g/mL)中,微沸1min,取出用水和无水乙醇分别冲洗两次以上,在100℃烘箱中烘4min,冷却,置于磨口瓶中备用。

(3)溴水(AR)。

(4)氟化氢铵(AR)。

(5)盐酸(ρ=1.19g/mL)。

(6)硝酸(ρ=1.42g/mL)。

(7)硫酸(ρ=1.84g/mL)。

(8)高氯酸(ρ=1.67g/mL)。

(9)冰乙酸(1+3)(ρ=1.05g/mL)。

(10)硝酸(1+1)。

(11)氟化氢铵饱和溶液(贮存在乙烯瓶中)。

(12)乙酸铵溶液(300g/L):称取90g乙酸铵,置于400mL烧杯中,加入150mL蒸馏水和100mL冰乙酸,溶解后用水稀释至300mL,混匀,此溶液pH值为5。

(13)硫氰酸钾(100g/L):称取 10g 硫氰酸钾溶于 400mL 烧杯中,加 100mL 水溶解。

(14)淀粉溶液称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的蒸馏水稀释至100mL,加热煮沸,冷却备用。

(15)三氯化铁(100g/L)。

(16)碘化钾(AR)

(17)硫代硫酸钠(约0.04mol/L):

——制备:称取100g 硫代硫酸钠(Na2S2O3·5H2O)置于1000mL 烧杯中,加入500mL无水碳酸钠(4g/L)溶液,移入10L棕色试剂瓶中,用煮沸并冷却的蒸馏水稀释至约10L,加入10mL三氯甲烷,静置两周,使用时过滤,补加1mL三氯甲烷,摇匀,静置2h。

——标定:称取0.080 g(精确至0.0001 g )处理过的纯铜三份,分别置于500mL锥形瓶中,加10mL硝酸(1+1),于电热板上低温加热至溶解,取下,用水吹洗杯壁。加入5mL硫酸(1+1),继续加热蒸至近干,取下稍冷,用约40mL蒸馏水冲洗杯壁,加热煮沸,使盐类完全溶解,取下,冷至室温。加1mL冰醋酸(1 +3),加3mL氟化氢铵饱和溶液,加入2~3g碘化钾摇动溶解,立即用硫代硫酸钠标准溶液滴定至浅黄色,加入2mL淀粉溶液继续滴定至浅蓝色,加5mL硫氰酸钾溶液,激烈摇振至蓝色加深,再滴定至蓝色刚好消失为终点。随同标定做空白试验。

按下式计算硫代硫酸钠标准滴定溶液的滴定度:

岩石矿物分析

式中:T为硫代硫酸钠标准溶液对铜的滴定度,g/mL;m为称取纯铜的质量,g;V为滴定纯铜所消耗的硫代硫酸钠标准溶液的体积,mL;V0为滴定空白所消耗的硫代硫酸钠标准溶液的体积,mL。

二、分析步骤

精确称取0.2000 g铜精矿置于300mL锥形瓶中,用少量水润湿,加入10mL浓盐酸置于电热板上低温加热3~5min取下稍冷,加入5mL硝酸和0.5~1mL溴,盖上表皿,混匀,低温加热(若试料中含硅、碳较高时加5~10mL高氯酸)待试样完全分解,取下稍冷,用少量蒸馏水冲洗表皿,继续加热蒸至近干,冷却。

用30mL蒸馏水冲洗表皿及杯壁,盖上表皿,置于电热板上煮沸,使可溶性盐类完全溶解,取下冷却至室温滴加乙酸铵溶液至红色不再加深为止,并过量3~5mL,然后滴加氟化氢铵饱和溶液至红色消失并且过量1mL混匀。加入2~3 g碘化钾摇动溶解,立即用硫代硫酸钠标准溶液滴定至浅黄色,加入2mL淀粉溶液继续滴定至浅蓝色,加5mL硫氰酸钾溶液,激烈摇振至蓝色加深,再滴定至蓝色刚好消失为终点。随同试样做空白试验。

若铁含量极少时,需补加1mL三氯化铁溶液;如果铅铋含量较高,需提前加入2mL淀粉溶液。

三、结果计算

按下式计算铜质量的百分含量:

岩石矿物分析

式中:w(Cu)为铜的质量分数,%;T为硫代硫酸钠标准滴定溶液对铜的滴定度,g/mL;V为滴定试样溶液消耗硫代硫酸钠标准滴定溶液的体积,mL;V0为滴定空白试样溶液所消耗硫代硫酸钠标准滴定溶液的体积,mL;m为称取试样的质量,g。

四、质量表格填写

任务完成后,填写附录一质量表格3、4、5。

任务分析

一、碘量法测定铜的原理

碘量法测定铜的依据是在弱酸性溶液中(pH=3~4 ),Cu2+与过量的KI作用,生成CuI沉淀和I2,析出的I2可以淀粉为指示剂,用Na2S2O3标准溶液滴定。有关反应如下:

岩石矿物分析

Cu2+与I-之间的反应是可逆的,任何引起Cu2+浓度减小(如形成配合物等)或引起CuI溶解度增大的因素均使反应不完全,加入过量KI,可使Cu2+的还原趋于完全。但是,CuI沉淀强烈吸附

,又会使结果偏低。通常使用的办法是在近终点时加入硫氰酸盐,将CuI(Ksp=1.1×10-12)转化为溶解度更小的CuSCN沉淀(Ksp=4.8×10-15)。在沉淀的转化过程中,吸附的碘被释放出来,从而被Na2S2O3溶液滴定,使分析结果的准确度得到提高。即:

CuI+SCN-→CuSCN+I-

硫氰酸盐应在接近终点时加入,否则SCN-会还原大量存在的Cu2+,致使测定结果偏低。溶液的pH值一般应控制在3.0~4.0之间。酸度过低,Cu2+易水解,使反应不完全,结果偏低,而且反应速率慢,终点拖长;酸度过高,则I-被空气中的氧氧化为I2(Cu2+催化此反应),使结果偏高。

Fe3+能氧化I-,对测定有干扰,但可加入NH4HF2掩蔽。NH4HF2是一种很好的缓冲溶液,因HF的Kα=6.6×10-4,故能使溶液的pH值保持在3.0~4.0之间。

二、Na2S2O3标准溶液的配制

由于Na2S2O3不是基准物,因此不能直接配制标准溶液。配制好的Na2S2O2溶液不稳定,容易分解,这是因为在水中的微生物、CO2、空气中的O2作用下,发生下列反应:

岩石矿物分析

岩石矿物分析

岩石矿物分析

此外,水中微量的Cu2+或Fe3+也能促进Na2S2O3溶液的分解。

因此,配制Na2S2O3溶液时,需要用新煮沸(为了除去CO2和杀死细菌)并冷却了的蒸馏水,加入少量Na2CO3使溶液呈弱碱性,以抑制细菌的生长。这样配制的溶液也不易长期保存,使用一段时间后要重新标定。如果发现溶液变浑浊或析出硫,也应该过滤后再标定或者另配溶液。

三、干扰元素及其消除办法

(1)三价铁离子:Fe3+的存在有显著干扰,因为它能氧化I-,析出碘,使结果偏高。为使碘量法测定铜在有铁存在下也能够进行,常把铁转变为不与碘化钾作用的配合物,一般是加入氟化钾(铵),此时,Fe3+结合成为不与碘化钾起反应的配离子

这是快速碘氟法的基础。

(2)亚砷酸、亚锑酸:在碘量法测定铜的条件下(pH>3.5),

等离子能被析出的I2氧化,使结果偏低,甚至不放出I2,因而干扰测定。其反应如下:

岩石矿物分析

五价的砷、锑在pH>3.5的条件下对测定无干扰。因此可在分解试样时将三价砷和锑氧化为高价以消除其干扰。As(Ⅲ)和Sb加入溴水氧化。煮沸除去过量的溴。

(3)亚硝酸根有影响,可于溶液中加入尿素除去。

(4)碘化亚铜沉淀吸附碘,使测定结果偏低。加入硫氰酸铵和碘化亚铜作用,因硫氰化亚铜的溶解度比碘化亚铜的溶解度小,生成硫氰化亚铜,消除对碘的吸附。当铜含量很低时可不加硫氰酸铵。当铜的含量较高时,在滴定终点到达之前可加入适量的硫氰酸铵溶液,使碘化亚铜转变为硫氰化亚铜:

CuI+SCN-→CuSCN+I-

滴定时,体积不能太大,否则碘化亚铜又形成二价铜盐,使溶液变蓝,终点不明显。

实验指南与安全提示

/试样中碳含量较高时,需加2mL硫酸和2~5mL高氯酸,加热溶解至无黑色残渣,并蒸干。

试样中含硅、碳较高时,加0.5 g氟化氢铵和5~10mL高氯酸。

试样中含砷锑高时,需加入溴水,再加入硫酸冒烟处理。

碘化钾的用量:由于I-与Cu2+的反应是一个可逆反应:

岩石矿物分析

故为使Cu2+与I-定量地反应,I-(通常以KI形式加入)过量是十分必要的。实际分析中,一般加入2g左右的KI即可使Cu2+与I-定量地反应。另外,由于过量I-的存在,反应生成的碘能形成I3-,可减少因碘的易挥发性所带来的误差。

硫氰酸盐的作用:在测定铜的溶液中加入硫氰酸盐,使碘化亚铜变为溶解度更小的硫氰酸亚铜,反应如下:

CuI+SCN-→CuSCN+I-

①可克服碘化亚铜对碘的吸附(铜含量高时,这种吸附是相当显著的),使终点清晰;

②可使I-与Cu2+的反应进行得更完全;

③并可增加碘离子浓度,减少碘化钾(价格昂贵)的加入量。

硫氰酸盐的加入时间:当铜的含量较高时,可以接近终点时加入适量的硫氰酸钾应溶液。过早加入会使结果偏低,因为铜可被CNS-还原。反应如下:

岩石矿物分析

滴定时溶液的酸度:碘量法滴定铜可以在醋酸、硫酸或盐酸介质中进行,目前采用最多的还是在醋酸介质中进行,主要原因是在醋酸介质中比在硫酸或盐酸介质中较易控制测定所需的酸度。碘量法测定铜时,pH必须维持在3.5~4之间。

①在碱性溶液中

将发生下列反应:

5H2O,而且I2在碱性溶液中会发生歧化反应生成

也可能有水解副反应。

②在强酸性溶液中Na2S2O3溶液会发生分解:

酸度太大,碘化物易被空氧化而析出碘:4I-+4H+O2→2I2+2H2O

③铜矿石中常含有Fe、As、Sb等金属,样品溶解后,溶液中的Fe3+、As(Ⅴ)、Sb(Ⅴ)等均能氧化I-为I2,干扰Cu2+的测定。As(Ⅴ)、Sb(Ⅴ)的氧化能力随酸度下降而下降,当pH>3.5时,其不能氧化I-。Fe3+的干扰可用F-掩蔽。

滴定时溶液的体积:体积不能太大。化学反应的速度与反应物的浓度有关。增大溶液体积,就相当于降低Cu2+与I-的浓度,使反应速度变慢,碘化亚铜又形成二价铜盐,出现终点返回的现象,终点不明显。

若亚硝酸根未除尽,可加少许尿素,煮沸数分钟。

空白溶液和铁含量很低的试样,为了便于调节pH,可加入数滴100g/L NH4Fe(SO42溶液。

案例分析

1.鸿盛矿业公司化验室某员工在用碘量法测定一含铜矿石中的铜含量时,用盐酸、硝酸溶解样品后,加入NH4F消除Fe3+的干扰,但其测定结果经过比较后发现偏高,请以你所学知识分析结果可能偏高的原因。

2.赣州钴钨公司购进了一批含铁铜矿石,对方出具的检验报告表明该批次铜含量为11.26%,实验室某员工在使用碘量法测定铜含量时,将样品溶解后,用NaAc溶液调节溶液的pH值3.5~5.0左右,加入KI还原Cu2+,滴定完毕,计算结果后发现结果比对方检验更高。技术主管在查找原因时发现该员工忘记加入NH4F,请分析此次测定失败的原因。

阅读材料

铜精矿知识简介

1.概述

自然界中含铜矿物有200多种,其中具有经济价值的只有十几种,最常见的铜矿是硫化铜矿,例如:黄铜矿(CuFeS2)、辉铜矿(Cu2S)、铜蓝(CuS)等,目前世界上80% 的铜来自此类矿石。铜精矿是将矿石粉碎球磨后,用药剂浮选分离捕集含铜矿物,使品位大大提高,供冶炼铜用。少数铜矿中(如湖北大冶铜绿山矿),常常夹杂有孔雀石,这是一种含铜的碳酸盐矿物,色泽优美,经琢磨雕刻,可做成佩饰或项链等装饰品,属稀有宝石类,深受人们喜爱。

我国开采冶炼铜矿的历史悠久,可追溯到春秋时代,距今有2700多年。大冶有色金属公司铜绿山矿在生产过程中发现的古铜矿遗址,经考古发掘,已清理出从西周至西汉千余年间不同结构、不同支护方式的竖井、斜井、盲井数百座,平巷百余条,以及一批春秋早期的炼铜鼓风竖炉,随同出土还有大量的用于采矿、选矿和冶炼的生产工具,在遗址旁近2km2的地表堆积着约40 万吨以上的古代炼渣,渣样分析,其铜含量小于0.7%,它表明了我国古代采冶的规模和高超的技术水平。

我国现代化的大型炼铜采冶企业有:江西铜业有限公司、大冶有色金属公司(湖北)、铜陵有色金属公司(江苏)、白银有色金属公司(甘肃)、中条山有色金属公司(山西)以及云南冶炼厂、沈阳冶炼厂、葫芦岛锌厂等。由于自采铜矿的品位和数量有限,不能满足生产的需要,因而对进口铜精矿的需求日益增大,与我国有过贸易往来的铜精矿生产国有:巴布亚新几内亚、菲律宾、印尼、澳大利亚、蒙古、摩洛哥、莫桑比克、南非、波兰、秘鲁、智利、墨西哥、美国、加拿大等。

2.特性

进口硫化铜精矿一般为墨绿色到黄绿色,也有灰黑色,其中时有夹杂少许蓝色粉末。铜精矿是浮选产物,粒度较细,接近干燥的铜精矿在储运过程中易扬尘散失,也不适宜远洋运输,因此生产过程中常保持10% 左右的水分。气温高时,硫化铜精矿易氧化,特别是远洋运输时间长,或在夏季交接货物时,氧化现象更为严重。验收这种铜精矿时,往往铜品位降低,收货重量增加。正是由于这种原因,铜精矿在贸易的交接过程中,是以总金属量来衡量的。用于品质分析的样品,应密封于铝箔袋中存放。实验证明,封存于纸袋或聚乙烯袋中的样品,放置干燥器中保存一个月,铜的百分含量明显降低,随着保存时间的延长,铜品位还会继续下降,而封存在铝箔袋中的样品,即使存放半年,铜含量也无明显变化。

从冶炼的角度来说,铜精矿中硫和铁的含量高些好,一般要求铜/硫比为1∶1 左右,Fe>20%,Si<10%,这种矿在反射炉中造渣性能和流动性能都较好。对杂质元素Cr、Hg、Pb、Zn、Bi、As、F、Cl等含量要求愈低愈好,主要是为了满足冶炼的要求和对环境的保护。

3.用途

铜精矿供炼铜用。从矿石冶炼得到的“羊角铜”即粗铜,经电解可得到纯度很高的电解铜。在冶炼和电解过程中,还可以从阳极泥、电解液、烟道灰和尾气中分别回收金、银、钯、铂、镉、铅、锌、铋、硒、碲、硫等元素或化合物,余热可发电。综合利用不仅可减少废液、废渣、废气对环境和空气的污染,同时变废为宝,提高了铜精矿的利用价值。

4.化学成分

硫化铜精矿的主要成分是铜、铁、硫,主要的贵金属有金、银,其他成分有硅、钙、镁、铅、锌、铝、锰、铋、锑、氟、氯等,因原矿产地和选矿水平不同,品质差异较大。

5.进口规格

进口铜精矿以成交批中铜、金、银的纯金属量作为结算依据,一般铜含量为25%~45%,金含量为1~35g/t,银含量在30~350g/t范围内,当金含量小于1g/t,银含量小于30 g/t时,金、银二项不计价。经多年进口铜精矿实践,从价格和回收率来考虑,企业喜欢进口含铜量在30% 左右,金银含量在不计价范围之铜精矿。对冶炼和环境有害的元素F、Cl、Pb+Zn、As、Sb、Hg要求在限量之下,超过限量则按规定罚款,超过最高限量时,该批货拒收。

6.检验标准

铜精矿的检验,一般按500 t作为一个副批,在衡重的同时扦取代表性样品,制备水分测定样品和品质分析样品,按规定进行分析测定,以全部副批检验结果的加权平均值作为最终结果。发货人和收货人品质检验结果在误差范围内,该批货可顺利交接,若双方结果超出0.3%,金的结果超出0.5g/t,银的结果超出10~15g/t,有可能需要仲裁。

我国铜精矿的技术条件标准和检验标准较为完整。YS/T318 -2007 是铜精矿技术条件标准,该标准将铜精矿原有的15个品级修订为五个品级;取制样方法和水分含量测定按GB/T14263-2010进行,根据工作实践,有的铜精矿中金银含量特别高,GB/T3884规定了Cu、Au、Ag、S、As、MgO、F、Pb、Zn、Cd的检验方法。

⑸ 测定方法

铼通常采取光度法、极谱法和ICP-MS法等进行测定。

光度法测铼的试剂很多,特别是三苯甲烷、噻嗪、吖啶类染料以及肟类、含硫基的有机试剂等均能与Re7+或Re4+形成有色配合物,大部分可被有机溶剂所萃取,一定量的钼不干扰测定。经萃取分离后的有机相有很深的颜色并与浓度成正比,可直接进行铼的光度法测定。

有关试剂的测试条件及灵敏度列于表62.19中。

表62.19 一些光度法测定铼的灵敏度比较

续表

肟类有机显色剂需预先将ReO-4与其他元素分离,再以氯化亚锡还原为Re(Ⅳ),然后显色测定。

62.5.3.1 萃取分离-硫氰酸盐光度法

方法提要

试样经氧化镁烧结分解,水浸取,大量Fe、Mo、W、Nb、V、Ca、Mg、Al、Bi、Mn、Ag、Zn、Ni、Co、Cr、Sn、Cu、Te等不进入溶液或不干扰铼的测定。在酒石酸存在下,调节pH8~9,用氯化四苯胂-三氯甲基烷萃取分离高铼酸,可进一步分离V、W、Mo、Nb、Cu、Cr等干扰离子。

将三氯甲烷分出后置水浴上蒸干,以6mol/LHCl溶解高铼酸盐,以二氯化锡还原,硫氰酸盐显色,乙酸丁酯萃取,有机相于分光光度计430nm波长处,测量吸光度测定铼量。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定,也适用于钨矿石中铼量的测定。测定范围w(Re):(1~300)×10-6

仪器

分光光度计。

试剂

氧化镁。

酒石酸。

盐酸

过氧化氢。

氢氧化铵。

三氯甲烷。

乙酸丁酯。

碳酸氢钠溶液(100g/L)。

氯化四苯胂(TPAC)溶液(20g/L)。

氯化钠溶液(100g/L)。

硫氰酸钾溶液(250g/L)。

二氯化锡溶液(350g/L)在(1+1)HCl中投入一定量颗锡粒,贮于棕色瓶中。

铼标准储备溶液ρ(Re)=50.0μg/mL称取10.00mg高纯金属铼于100mL烧杯中,加20mL(1+1)氢氧化铵,5mLH2O2,置水浴上溶解并蒸干,加少量水温热溶解,移入200mL容量瓶中,用水稀释至刻度,混匀。

铼标准溶液ρ(Re)=5.0μg/mL用水稀释铼标准储备溶液制得。

酚酞指示剂(10g/L)乙醇溶液。

校准曲线

曲线A:分取0mL、0.50mL、1.00mL、1.50mL、2.00mL铼标准溶液。曲线B:分取0mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL铼标准溶液,分别置于一组25mL带塞比色管中,补加水至8mL,加8mLHCl、混匀。加入1.5mLKSCN溶液,1.5mLSnCl2溶液(每加一次试剂都混匀),放置20min后,加入6.0mL(曲线A)或10.0mL(曲线B)乙酸丁酯,振摇15min,放置分层后,取有机显色液于分光光度计上,在波长430nm处,用3cm(曲线A)或2cm(曲线B)比色皿,以乙酸丁酯作参比测量吸光度,绘制校准曲线。

分析步骤

根据铼的含量,称取0.1~2g(精确至0.0001g)试样。铼量小于5×10-6,称取2g;5×10-6~30×10-6,称取1g;30×10-6~60×10-6,称取0.5g;大于60×10-6,则称取0.1~0.3g。也可用萃取剂体积进行调节。将试样置于预先盛有2gMgO的20mL瓷坩埚中(称取1g试样增加2gMgO),搅拌均匀,再覆盖约0.5gMgO,置于高温炉中由低温逐渐升温至(630±20)℃保持2h,取出冷却。

将烧结物倒入已盛有4~5滴H2O2的100mL烧杯中,以热水洗坩埚数次,洗液倒入烧杯用水冲稀至50mL体积左右(浸出体积不宜太小,煮沸后体积约有30mL即可),盖上表面皿,置电炉上煮沸10min,再移在低温控温电热板上保温2h,使溶液清澈后取下冷却。沉淀用中速滤纸过滤,滤液以100mL烧杯承接,沉淀用水洗5~6次。

滤液置控温电热板上蒸发至约10mL,加入1g酒石酸,取下,加1滴酚酞指示剂,用(1+1)氢氧化铵中和至溶液变红,用少量水移入已盛有2mLNaHCO3溶液的60mL分液漏斗中,体积控制为20mL,加入1mLTPAC溶液,10mL三氯甲烷,萃取2min,静置分层,用干滤纸条擦净漏斗颈部存在的水珠,小心地将三氯甲烷放入20mL干烧杯中。向水相中再加5mL三氯甲烷,萃取2min,同法将三氯甲烷合并入20mL烧杯中,加入0.1mLNaCl溶液,置沸水浴上蒸干。加入6mL(1+1)HCl,继续置沸水浴上加热5min,取下冷却。用10mL(1+1)HCl将烧杯内溶液移入25mL带塞比色管中,混匀。以下按校准曲线进行测定。

铼含量的计算参见式(62.2)。

62.5.3.2 环己酮萃取分离-α-糠偶酰二肟光度法

方法提要

试样经氧化镁烧结,热水浸取,大部分元素得到分离。微克量的钼、铋、砷、铅、镍等干扰元素,可用环己酮在碱性溶液中萃取分离。微量高铼酸在4.2~5mol/LH2SO4介质中被氯化亚锡还原为四价,四价铼可催化α-糠偶酰二肟的酸解,产生α-糠偶酰二酮。在320nm处有一新吸收峰(加入柠檬酸可促进催化反应),可检出0.005~0.06μg/mLRe。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定,测定范围w(Re):(0.01~100)×10-6

仪器

分光光度计。

试剂

氧化镁。

过氧化氢。

硫酸c(1/2H2SO4)=12.5mol/L。

环己酮。

三氯甲烷。

氢氧化钠溶液(200g/L)。

硫酸钠溶液(100g/L)。

柠檬酸溶液(192g/L)。

α-糠偶酰二肟溶液0.4gα-糠偶酰二肟溶于100mL乙醇。

氯化亚锡溶液称取0.7gSnCl2·2H2O于200mL烧杯中,加约30mL水,边搅拌边缓慢加入42mLH2SO4,待氯化亚锡全部溶解后移入100mL容量瓶中,用水稀释至刻度,混匀。

铼标准储备溶液ρ(Re)=50.0μg/mL称取25.00mg金属铼置于50mL烧杯中,加入5mLHNO3,5mL(1+1)H2SO4,在控温电热板上加热溶解,蒸发至2~3mL,用水吹洗杯壁,再蒸发至硝酸全部除尽。用水移入500mL容量瓶中并稀释至刻度,混匀。

铼标准溶液ρ(Re)=1.0μg/mL用水稀释铼标准储备溶液制备。

校准曲线

分取0.00mL、0.05mL、0.10mL、0.20mL、0.40mL、0.60mL铼标准溶液置于一组50mL分液漏斗中,加入5mLNaOH溶液、5mLNa2SO4溶液、10mL环己酮,萃取1min,静置分层后弃去水相。往有机相中加10mL水和10mL三氯甲烷,反萃取1min,分层后弃去有机相。水相放入50mL烧杯中,加0.5mL12.5mol/LH2SO4、数滴过氧化氢,置水浴上蒸发至1~2mL,反复加过氧化氢至黄色褪去,用水吹洗杯壁,蒸发至水分及过氧化氢完全逸出。

取下冷却,加2.5mL水、1mL柠檬酸溶液,用少量水将溶液移入10mL比色管中,加2mL2.5mol/LH2SO4,冷却,加2.5mLα-糠偶酰二肟溶液、1.5mLSnCl2溶液,用水稀释至刻度,混匀,放置过夜(温度应不低于20℃),次日于分光光度计上,在波长380nm处测量吸光度,绘制校准曲线。

分析步骤

称取0.5~1g(精确至0.0001g)试样,置于已盛有3gMgO的瓷坩埚中,搅匀,再覆盖约1g,置高温炉中由低温升至700℃保持2h,取出冷却。用热水浸取,加数滴过氧化氢,煮沸30min,用中速滤纸过滤于100mL容量瓶中,用水洗烧杯及沉淀数次,并稀释至刻度,混匀。

分取20.00mL上述溶液于100mL烧杯中,在控温电热板上蒸发至近干,取下,加入5mLNaOH溶液,5mLNa2SO4溶液,移入50mL分液漏斗中,总体积为10mL左右。向分液漏斗中加10.0mL环己酮,萃取1min,以下按校准曲线进行测定。

铼含量的计算参见式(62.1)。

注意事项

烧结过程中,应经常开启炉门,以便充分氧化。

62.5.3.3 苯萃取-丁基罗丹明B光度法

方法提要

试样经氧化镁烧结,热水浸取。在2~3mol/LH3PO4介质中,高铼酸与丁基罗丹明B形成橙红色配合物,可用苯萃取铼的有色配合物,最大吸收峰在565nm波长处,摩尔吸光系数为4×104,借以进行光度法测定。本方法适用于稀有和有色金属等一般矿石和岩石中铼量的测定。测定范围w(Re):(1~300)×10-6

仪器

分光光度计。

试剂

氧化镁。

磷酸。

氢氧化铵。

苯。

丁基罗丹明B溶液0.1g丁基罗丹明B溶于100mL水中。

铼标准溶液ρ(Re)=5.0μg/mL配制见62.5.3.1萃取分离-硫氰酸盐光度法。

校准曲线

分取0mL、1.00mL、2.00mL、3.00mL、4.00mL铼标准溶液于一组25mL比色管中,加4mL(1+1)H3PO4,加水稀释至10mL,加入1mL丁基罗丹明B溶液,混匀。准确加入5.0mL苯,萃取1min,静置分层后,在分光光度计上,于560nm波长处,用1cm比色皿测量吸光度,绘制校准曲线。

分析步骤

根据试样中铼的含量,称取0.5~1g(精确至0.0002g)试样置于事先盛有3gMgO的瓷坩埚中,充分搅匀,表面再盖一层,放入高温炉中,逐渐升高温度650~700℃,保持2h,取出冷却。将烧结物移入150mL烧杯中,用40~50mL水浸取,加热煮沸10min,稍冷后进行过滤,用水洗烧杯及滤纸各3次,将滤液加热浓缩至10mL左右,取下稍冷,加4mL(1+1)H3PO4,继续加热蒸发至体积小于10mL,移入25mL比色管中,用水洗烧杯2次,加水稀释至10mL。以下按校准曲线进行测定。

铼含量的计算参见式(62.2)。

注意事项

1)氧化镁纯度对空白影响很大,使用前应进行实验选择。烧结过程中,应稍开启炉门,以充分氧化。

2)显色时的磷酸浓度:铼含量低时,以0.3~1mol/L为宜,大于此酸度,色泽显著降低,小于此酸度,空白稍带颜色,最好控制在0.5~1mol/L。铼含量高时,可提高适当酸度。

3)汞、硝酸根、碘离子,高价锰以及其他氧化剂能与丁基罗丹明B显色,应除去。

4)大于0.1mg的钨、钒和铬影响测定;可分别采用酒石酸、抗坏血酸消除汞、硝酸根、碘离子。

62.5.3.4 催化光度法

方法提要

高铼酸盐可催化氯化亚锡还原碲酸钠成单质碲,在一定时间内所还原的碲量与铼量的浓度成正比,加入保护胶,碲呈棕黑色胶体存在于溶液中,于波长530~570nm,可用作光度法测定。

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

此反应若无高铼酸或其盐类存在时,在相当长的时间内是不会进行的。采用标准加入法,本法可测定0.001~0.1μg/mL铼。

仪器

分光光度计。

试剂

氧化镁。

三氯甲烷。

氢氧化钠溶液(200g/L)。

8-羟基喹啉溶液(25g/L)称取5g8-羟基喹啉于26mL(36+64)乙酸及适量水中,加热使之溶解,用水稀释至200mL。

氯化亚锡溶液(375g/L)称取37.5gSnCl2·2H2O溶于100mLHCl中。

混合液氯化亚锡溶液-500g/L酒石酸-浓盐酸-40g/L聚二烯醇(1+2+2+5)。

碲酸钠(5g/L)称取0.5gNa2TeO4加入5mLHCl及少量水溶解后稀释至100mL。

铼标准溶液ρ(Re)=50.0μg/mL配制见62.5.3.1萃取分离-硫氰酸盐光度法。然后配制铼含量为10.0μg/mL、1.0μg/mL、0.10μg/mL、0.050μg/mL、0.010μg/mL、0.005μg/mL、0.001μg/mL的系列。

酚酞指示剂(10g/L)乙醇溶液。

分析步骤

称取0.2~2g(精确至0.0001g)试样,置于预先铺有0.5~3.0gMgO的瓷坩埚中,充分搅匀,放入高温炉中逐渐升温到650℃,并在此温度下保持2h。取出冷却,用30~40mL热水将内容物移入150mL烧杯中,并洗净坩埚,加盖表面皿,在低温电热板上煮沸15~20min并保温至溶液清澈。取下稍冷,用中速滤纸过滤,用水洗烧杯及沉淀各3~4次,沉淀弃去。滤液收集在100mL烧杯中,在电热板上蒸发至5mL左右,将溶液移入50mL分液漏斗中(如有白色沉淀,可用小张滤纸或玻璃棉过滤除去),加入1滴酚酞,如溶液呈红色,则用(5+95)HCl调至红色恰好褪去,再加入2滴氢氧化钠溶液、1mL8-羟基喹啉溶液,混匀后放置5min。加入8mL三氯甲烷,剧烈振荡0.5min,待静置分层后,放出三氯甲烷。补加2滴氢氧化钠及0.5mL8-羟基喹啉,再加入8mL三氯甲烷,如此进行第二次和第三次萃取,然后再用5mL三氯甲烷萃取2次以除尽残留的8-羟基喹啉。各次有机相均弃去。将水相移入100mL烧杯中,分液漏斗用少量水洗2~3次,将合并的水溶液置低温电热板上蒸发至3~5mL,移入10mL容量瓶中,稀释至刻度,混匀(母液)。

吸取2.0mL母液4份,分别放入10mL比色管中,为A、B、C、D,另再取空白1份为E。再向B、C、D中分别加入相当于试液含铼量的0.7倍、1.4倍、2.1倍的铼标准溶液。向5支比色管中加水使溶液体积各为4.0mL,加入1mL混合液,混匀。放置使5支比色管中溶液的温度一致,分别加入1mL碲酸钠溶液并立即混匀。放置,待溶液出现适当的棕色即可于430~470nm处测量吸光度。测量时应严格控制每支比色管从加入碲酸钠起到比色读数的那一段时间间隔相一致。如室温较低,可置于45℃水浴上显色。

按下式计算试样中铼的含量:

岩石矿物分析第三分册有色、稀有、分散、稀土、贵金属矿石及铀钍矿石分析

式中:w(Re)为试样铼的质量分数,μg/g;mRe为试样中的铼量,μg;m为称取试样的质量,g;a、2a、3a为分别向比色管B、C、D中加入铼标准的质量,μg;A、A1、A2、A3、A0分别为比色管A、B、C、D、E溶液的比色读数。

加入铼标准的量(a)应与试样中铼量比例适当,此值可由该矿区的钼、铼比求得,也可吸取1mL母液作单份比色测定,求得铼的大致含量。

注意事项

铜、汞、锗、锡、铅、锑、铋、砷、钌、锇在100μg内无影响,钼及钨的干扰用酒石酸消除;钼对碲的还原亦有微弱的催化作用,可用硫化物分离后测定或用8-羟基喹啉-氯仿萃取分离钼。硝酸抑制反应,其他酸影响颜色强度,故采用标准加入法。

62.5.3.5 亚硫酸钠底液极谱法

方法提要

试样经氧化镁烧结,水提取,铼呈铼酸盐溶解于溶液中,而留在沉淀中的大部分共生元素分离。在6~10g/LNa2SO3溶液中,铼呈现良好的极谱波,半波电位为-1.59V(对饱和甘汞电极)。铼含量在0.2~4.0μg/mL之间,波高与浓度呈线性关系。

铬大于铼5倍时影响测定。本方法可以测定0.0001%以上的铼。

仪器

示波极谱仪。

试剂

氧化镁。

亚硫酸钠溶液(200g/L)。

铼标准储备溶液ρ(Re)=100.0μg/mL称取0.1000g高纯金属铼置于烧杯中,加入5mLHNO3,置于水浴中加热溶解,然后用5mLHCl逐HNO3,重复3次。蒸发至3mL左右,移入1000mL容量瓶中,用水稀释至刻度,摇匀。用时逐级稀释至所需要的浓度。

校准曲线

取6份烧结过的氧化镁(与试样同时进行),用20mL热水转入100mL烧杯中,分别加入含铼0μg、10μg、20μg、…、200μg的铼标准溶液,煮沸10min,冷却后移入已盛有20mLNa2SO3溶液的一组50mL容量瓶中,用水稀释至刻度,摇匀,放置澄清。分取部分上层清液,置于电解池中,起始电位为-1.3V,用示波极谱进行测定。绘制标准曲线。

分析步骤

称取0.1~2g(精确至0.0001g)试样,置于瓷坩埚中,加入2g粉状氧化镁,充分搅匀,再覆盖一层。置于高温炉中,逐渐升温到700℃烧结2h。取出冷却后,用20mL热水将烧结物移入100mL烧杯中,煮沸10min,以下操作同校准曲线。

铼含量的计算参见式(62.2)。

注意事项

在硫酸-硫酸钠底液中,有硫酸羟胺存在下,铼-碲催化体系既可以用来测定碲,同时可以测定微量铼。此外,在盐酸-二乙基二硫代氨基甲酸钠、硫酸-甲基醛-铜-碲、盐酸-硫氰酸钾-α-糠偶醛二肟等介质中,铼也能产生灵敏的催化波。有的体系灵敏度较高,检测下限能达到0.00xμg/mLRe。

62.5.3.6 硫酸-EDTA-聚乙烯醇-二苯胍底液催化极谱法

方法提要

试样经氧化镁烧结后,水提取,过滤。在硫酸-EDTA-聚乙烯醇底液中,加入适量二苯胍,可使铼的催化波大为提高,检出量可达0.001μg/mL。于电位-0.50V~-0.8V处,作导数极谱图。本方法适用于稀有和有色金属等一般矿石和岩石中铼含量的测定。测定范围w(Re):(0.01~100)×106

试剂

氧化镁。

硫酸。

聚乙烯醇溶液(1g/L)。

二苯胍溶液(1g/L)加1滴(1+1)H2SO4

碲溶液ρ(Te)=10.0μg/mL称取0.2500g金属碲于50mL烧杯中,加10mLHNO3,在水浴上加热溶解,然后加5mLH2SO4,蒸发至3mL,冷却,用水移入250mL容量瓶并稀释至刻度,混匀。再用水稀释至要求浓度。

混合底液称取3g盐酸羟胺,0.6gEDTA,用水溶解后,加40mL(1+1)H2SO4,然后依次加入7.5mL碲溶液、4mL聚乙烯醇溶液、15g抗坏血酸、2mL二苯胍溶液,用水稀释至100mL,混匀。现用现配。

铼标准溶液ρ(Re)=0.50μg/mL配制方法见62.5.3.2环己酮萃取分离-α-糠偶酰二肟光度法。

仪器

极谱仪(带导数部分)。

校准曲线

取0.00mL、0.20mL、0.60mL、1.00mL、4.00mL、8.00mL、12.00mL、16.00mL铼标准溶液或0mL、0.20mL、0.60mL、1.00mL、2.00mL、4.00mL、6.00mL铼标准溶液,分别置于一组50mL烧杯中,置控温电热板上,加热蒸干,加入10.0mL混合底液微热溶解盐类,放置20min后,于极谱仪上,电位-0.5V~-0.8V处,作导数极谱图。绘制校准曲线。

分析步骤

根据试样中铼的含量,称取0.1~1g(精确至0.0001g)试样,置于已盛有2~3gMgO的瓷坩埚中,搅匀后再覆盖一层,置于高温炉中,逐渐升温至700℃,保持2h,取出冷却,置100mL烧杯中,加入30mL热水,加热煮沸5~10min。将溶液过滤于100mL烧杯中,用水洗烧杯和沉淀数次。滤液置控温电热板上加热蒸干,加入10.0mL混合底液微热溶解盐类,以下按校准曲线进行测定。

铼含量的计算参见式(62.2)。

注意事项

1)在烧结过程中,应稍开启炉门,以便充分氧化。

2)铼的催化波在4h内稳定性良好。碲量的多少影响铼催化波的波高,因此底液必须加准,10mL底液中含7.5μg碲为最佳量。二苯胍的加入能促使铼的催化波增高,加入量也应适当,过量反而使波高下降。

62.5.3.7 硫氰酸钾-α-糠偶酰二肟-盐酸底液催化极谱法

方法提要

试样经氧化镁烧结,热水浸取。在0.48mol/LHCl-3g/LSnCl2-0.5g/LKSCN-0.2g/Lα-糠偶酰二肟-!=0.008%丙酮体系中,铼在-0.93V处产生一灵敏的催化波,在0.1~0.8μg/mL铼浓度范围内,峰电流与浓度呈线性关系。本方法适用于稀有、有色金属等一般矿石和岩石中铼含量的测定。测定范围w(Re):(1~100)×10-6

仪器

示波极谱仪。

试剂

氧化镁。

丙酮。

盐酸。

二氯化锡溶液(150g/L)溶于(1+4)HCl。

硫氰酸钾溶液(25g/L)。

α-糠偶酰二肟溶液0.5gα-糠偶酰二肟溶于100mL(5+95)乙醇溶液。

铼标准溶液ρ(Re)=10.0μg/mL称取0.1000g(精确至0.0001g)高纯金属铼于100mL烧杯中,加5mLHNO3,置水浴上溶解,加5~8mLHCl,赶去剩余的硝酸,重复3次,最后剩3mL左右,取下,用水移入1000mL容量瓶中并稀释至刻度,混匀。吸取20.00mL于200mL容量瓶中,用水稀释到刻度,混匀。

校准曲线

分取0mL、0.50mL、1.00mL、1.50mL、2.00mL、3.00mL、5.00mL铼标准溶液,分别置于一组25mL容量瓶中,用水稀释至10mL左右,加入2mL(1+1)HCl、0.5mLSnCl2溶液、0.5mLKSCN溶液、1mLα-糠偶酰二肟溶液、4滴丙酮,用水稀释至刻度,混匀。将溶液倒入电解池中,用示波极谱仪导数部分,-0.93V处测量峰电流,绘制校准曲线。

分析步骤

称取0.5~2g(精确至0.0001g)试样,置于预先盛有3~5gMgO的瓷坩埚中,充分搅匀,表面再覆盖一层,置高温炉中,从低温逐渐升至700℃并保持2h,取出冷却。将烧结物移入100mL烧杯中,用40mL热水浸取并煮沸3~5min,冷却。移入50mL容量瓶中,用水稀释至刻度,混匀,放置澄清。

分取5.0~10.0mL清液于25mL容量瓶中,加入2mL(1+1)HCl,以下按校准曲线进行测定。

铼含量的计算参见式(62.1)。

注意事项

1)在烧结过程中,应稍开启炉门,以便充分氧化。

2)每加一种试剂均须混匀,低价铼只有在低酸度介质中与α-糠偶酰二肟、硫氰酸盐形成电活性配合物,可允许一定量EDTA、酒石酸、草酸等存在。

62.5.3.8 电感耦合等离子体质谱法

方法提要

采用氧化镁半熔法、过氧化钠熔融-丙酮萃取法或硝酸分解法处理试样,等离子体质谱法测定铼。一般ICP-MS的仪器检出限为0.001ng/mL,根据各种前处理方法的稀释倍数,并考虑到基体、空白等因素,对试样的测定限为w(Re):(0.2~2)×10-6

仪器

等离子体质谱仪。

试剂

氧化镁。

过氧化钠。

丙酮。

硝酸。

过氧化氢。

氢氧化钠溶液(250g/L)。

铼标准储备溶液ρ(Re)=100.0μg/mL称取0.14406g高纯铼酸铵(NH4ReO4)置于烧杯内,溶于水中,移入1000mL容量瓶内,用水稀释至刻度,摇匀。

铼标准溶液ρ(Re)=20.0ng/mL由铼标准溶液稀释配制。

铱内标溶液ρ(Ir)=20.0ng/mL。

分析步骤

(1)试样处理

a.氧化镁半熔法。称取0.5g(精确至0.0001g)试样置于瓷坩埚中,加入1.5gMgO,搅拌均匀,再覆盖0.5g,放入高温炉,逐渐升温至700℃,焙烧时炉门开一缝,使加入空气以促进铼的氧化。保持1h后,取出冷却,将坩埚内半熔物转入150mL烧杯中,用50mL热水浸取。煮沸1h,冷却。转入50mL容量瓶,用水稀释至刻度,摇匀,放置。取上清液干过滤后上机测定。

b.过氧化钠熔融-丙酮萃取法。称取0.5g(精确至0.0001g)试样,置于高铝坩埚中,加入3gNa2O2,搅匀,再覆盖一层,置于高温炉中,在700℃熔融10min,取出冷却,将坩埚置于烧杯中,加30mL热水提取,洗出坩埚,冷却后将碱性试样溶液和沉淀一并转入120mLTeflon分液漏斗中,补加氢氧化钠溶液至浓度约为5mol/L。加入10mL丙酮萃取Re,振荡1min,静止分层(如沉淀太多,需多加氢氧化钠溶液,转入50mL离心管离心,将上清液转入分液漏斗进行分相)。弃去下层水相和沉淀,加2mLNaOH溶液到分液漏斗中。振荡1min,进一步洗去丙酮相中的杂质,弃去下层水相。将丙酮相转入50mL离心管中,离心10min,用滴管取出上部丙酮到已加有2mL水的100mLTeflon烧杯中(这一次离心是为了保证丙酮相不会夹杂碱液,防止以后溶液含盐量过高而导致雾化器堵塞)。在电热板上加热,开始保持约50℃,待丙酮蒸发完后,升高电热板温度到120℃,继续加热溶液至干。用0.5mLHNO3中和溶解残渣。有时HNO3提取液呈黄色,可能是丙酮的降解产物,反复加热近干并滴加H2O2和HNO3,可使溶液清亮无色,最终转入10mL比色管,用水稀释至刻度,摇匀,待上机测定。

c.硝酸分解法(适用于硫化矿物)。称取10~50mg试样,置于小烧杯中,加入5~10mLHNO3,盖上表面皿,于低温电热板加热至沸腾。继续加热至试样逐渐形成白色钼酸沉淀。去盖,继续加热至仅余约0.5mL溶液,加少量水加热,转入10mL比色管,用水稀释至刻度,摇匀。放置澄清后取上清液上机沉淀。

(2)上机测定

选用常规的ICP-MS工作参数继续测定。

测定同位素为185Re,内标为193Ir。以高纯水为低点、铼标准溶液为高点进行仪器校准,然后测定试样溶液。内标溶液在测定空白溶液、标准溶液和试样溶液时由三通导入ICP仪器。

注意事项

1)半熔法在焙烧过程中铼可能有少量挥发损失,结果略偏低,含量很低时可能偏低约10%。

2)半熔法处理试样不可选用187Re作为测定同位素,因为含铼试样中往往含有由铼衰变产生的放射性187Os,会对187Re的测定形成干扰。另两种处理方法因锇已被分离,不存在此问题。

3)用丙酮萃取铼的问题。丙酮与水混溶,当氢氧化钠浓度大于2mol/L时,丙酮与碱溶液分成两相。5mol/LNaOH时分相界面清晰。在碱性介质中大部分金属氢氧化物沉淀而得到分离。试样基体中的Mo、Fe、Ni、Cu、As等元素基本不被萃取。在当前所有Re的溶剂萃取方法中丙酮萃取方法较为简单快速并具有广泛的适用性。只需做一次萃取,不用反萃步骤,就可以把铼从辉钼矿、橄榄岩、玄武岩、黑色页岩、油页岩、黄铁矿、黄铜矿、铬铁矿、毒砂等基体中快速分离。

参 考 文 献

邓桂春,滕洪辉,刘国杰,等 . 2004. 铼的分离与分析研究进展 [J]. 稀有金属,28 ( 4) : 771 -776

邓桂春,臧树良,王永春,等 . 2000. 乙基紫萃取光度法测定铜烟灰中的铼 [J]. 分析化学,28( 8) : 1051

刘峙嵘 . 1997. 高铼酸盐 - 氨氯吡咪盐酸盐萃取光度法测定铼 [J]. 四川有色金属,( 2) : 65 -66

王靖芳,冯彦琳,李慧妍 . 1995. N,N - 二 ( 1 - 甲基庚) 乙酰胺萃取铼的研究 [J]. 稀有金属,19( 3) : 228

王清芳,罗锦超,冯彦琳,等 . 2001. N7301 萃取铼的研究 [J]. 有色金属 ( 冶炼部分) ,29

王顺昌,齐守智 . 2001. 铼的资源、用途和市场 [J]. 世界有色金属,( 2) : 12 -14

王献科,李玉萍,李莉芬 . 2000. 液膜分离富集测定铼 [J]. 中国钼业,24 ( 4) : 38 -41

王小琳,刘亦农,熊宗华 . 1995. 酮类试剂萃取分离铼的研究 [J]. 化学试剂,17 ( 3) : 143 -145

杨子超,王秀山,李运涛,等 . 1988. 氯化三烷基苄基铵萃取分离铼钼的研究 [J]. 西北大学学报,18( 3) : 46 -49

周迎春,刘兴江,冯世红,等 . 2003. 活性炭吸附法分离铼钼的研究 [J]. 表面技术,32 ( 4) : 31

周稚仙,杨俊英 . 1987. 苯并 -15 - 冠 -5 萃取分离铼的研究 [J]. 化学试剂,9 ( 1) : 50

⑹ 矿物鉴定和研究的物理方法

矿物鉴定和研究的物理方法是以物理学原理为基础,借助各种仪器,以鉴定和研究矿物的各种物理性质。主要方法有:

(一)偏光显微镜和反光显微镜鉴定法

偏光显微镜和反光显微镜鉴定法是根据晶体的均一性和异向性,并利用晶体的光学性质而鉴定、研究矿物的方法,也是岩石学、矿床学经常使用的一种晶体光学鉴定方法。应用这种方法时,须将矿物、岩石或矿石磨制成薄片或光片,在透射光或反射光作用下,借助显微镜以观察和测定矿物的晶形、解理和各项光学性质(颜色、多色性、反射率,折射率、双折射、轴性、消光角以及光性符号等)。

透射偏光显微镜用以观察和测定透明矿物(非金属矿物)。在装有费氏台的偏光镜下,还可用来研究类质同像系列矿物的成分变化规律以及矿物在空间上的排列方位与构造变动之间的关系。借此可以绘制出岩组图,用以解决地质构造问题。

反光显微镜(也称矿相显微镜)主要用以观察和测定不透明矿物(金属矿物),并研究矿物相的相互关系以及其他特征,借以确定矿石矿物成分、矿石结构、构造及矿床成因方面的问题。

(二)电子显微镜研究法

电子显微镜研究法是一种适宜于研究1μm以下的微粒矿物的方法,尤以研究粒度小于5μm的具有高分散度的粘土矿物最为有效。可分为扫描电子显微镜(Scanningelectronmicroscope简称:SEM)和透射电子显微镜(简称:TEM)两种方法。

粘土类矿物由于颗粒极细(一般2μm左右),常呈分散状态,研究用的样品需用悬浮法进行制备,待干燥后,置于具有超高放大倍数的电子显微镜下,在真空中使通过聚焦系统的电子光束照射样品,可在荧光屏上显出放大数十万倍甚至百万倍的矿物图像,据此以研究各种细分散矿物的晶形轮廓、晶面特征、连晶形态等,用此来区别矿物和研究它们的成因。

此外,超高压电子显微镜发出的强力电子束能透过矿物晶体,这就使得人们长期以来梦寐以求的直接观察晶体结构和晶体缺陷的愿望得到实现。

(三)X射线分析

X射线分析法是基于X射线的波长与结晶矿物内部质点间的距离相近,属于同一个数量级,当X射线进入矿物晶体后可以产生衍射。由于每一种矿物都有自己独特的化学组成和晶体结构,其衍射图样也各有其特征。对这种图样进行分析计算,就可以鉴定结晶矿物的相(每个矿物种就是一个相),并确定它内部原子(或离子)间的距离和排列方式。因此,X射线分析已成为研究晶体结构和进行物相分析的最有效方法。

(四)光谱分析

光谱分析法的理论基础是:各种化学元素在受到高温光源(电弧或电火花)激发时,都能发射出它们各自的特征谱线,经棱镜或光栅分光测定后,既可根据样品所出现的特征谱线进行定性分析,也可按谱线的强度进行定量分析。这一方法是目前测定矿物化学成分时普遍采用的一种分析手段。其主要优点是样品用量少(数毫克),能迅速准确地测定矿物中的金属阳离子,特别是对于稀有元素也能获得良好的结果。缺点是仪器复杂昂贵,并需较好的工作条件。

(五)电子探针分析

电子探针分析是一种最适用于测定微小矿物和包裹体成分的定性、定量以及稀有元素、贵金属元素赋存状态的方法。其测定元素的范围由从原子序数为5的硼直到92的铀。仪器主要由探针、自动记录系统及真空泵等部分组成,探针部分相当于一个X射线管,即由阴极发出来的高达35~50kV的高速电子流经电磁透镜聚焦成极细小(最小可达0.3μm)的电子束———探针,直接打到作为阳极的样品上,此时,由样品内所含元素发生的初级X射线(包括连续谱和特征谱),经衍射晶体分光后,由多道记数管同时测定若干元素的特征X射线的强度,并用内标法或外标法计算出元素含量。

(六)红外吸收光谱

简称红外光谱,是在红外线的照射下引起分子中振动能级(电偶极矩)的跃迁而产生的一种吸收光谱。由于被吸收的特征频率取决于组成物质的原子量、键力以及分子中原子分布的几何特点,即取决于物质的化学组成及内部结构,因此每一种矿物都有自己的特征吸收谱,包括谱带位置、谱带数目、带宽及吸收强度等。

红外吸收光谱分析样品一般需要1.5mg,最常使用的制样方法是压片法,即把试样与KBr一起研细,压成小圆片,然后放在仪器内测试。

目前红外吸收光谱分析在矿物学研究中已成为一种重要的手段。根据光谱中吸收峰的位置和形状可以推断未知矿物的结构,是X射线衍射分析的重要辅助方法,依照特征峰的吸收强度来测定混入物中各组分的含量。此外,红外光谱分析对考察矿物中水的存在形式、配阴离子团、类质同像混入物的细微变化和矿物相变等方面都是一种有效的手段。

⑺ 贵金属检测一般需要检测哪些元素

根据国标的要求,看你要检测什么纯度的那种贵金属。
可以咨询国家有色金属及电子材料分析测试中心

⑻ 怎样知道矿石中是否含金,我只要定性分析不要定量分析。(用化学方法)

先用王水将矿石溶解,然后在原子吸收仪器上测定!如果没有原子吸收仪器,则用碘量法测定。碘量法操作如下:用王水溶解矿石,使金全部转化为三氯化金,与碘化钾作用析出定量的游离碘,再用硫代硫酸钠滴定游离碘以测定金的含量。你只要定性分析的话,可以在用硫代硫酸钠滴定前先加点淀粉看看,淀粉显蓝色就是有金,反之,则没有金。

⑼ 任务贵金属分析方法的选择

任务描述

贵金属元素由于其性质的特殊性,在样品溶解、分离富集等方面与一般元素有很大的不同之处。通过本次任务的学习,加深对贵金属元素性质的了解,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况正确选择分离和富集方法,学会基于被测试样中贵金属元素含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。

任务分析

一、贵金属在地壳中的分布、赋存状态及其矿石的分类

贵金属元素是指金、银和铂族(铑、钌、钯、锇、铱、铂)共8 种元素,在元素周期表中位于第五、六周期的第Ⅷ族和第IB副族中。由于镧系收缩使得第二过渡元素(钌、铑、钯、银)与第三过渡元素(锇、铱、铂、金)的化学性质相差很小,因此贵金属元素的化学性质十分相近。

铂族元按其密度不同,分为轻重两族。钌、铑、钯为轻族;锇、铱、铂为重族。

金在自然界大都以自然金形式存在,也能和银、铜和铂族元素形成天然合金。根据最新研究成果,金的地壳丰度值仅为1 ng/g。金矿床中伴生的有用矿产很多。在脉金矿或其他原生金矿床中,常伴生有银、铜、铅、锌、锑、铋和钇等;在砂金矿床中,常伴生有金红石、钛铁矿、白钨矿、独居石和刚玉等矿物。此外,在有色金属矿床中,也常常伴生金。金的边界品位一般为1 g/t。一般自然金里的金含量大于80%,还有少量的铜、铋、银、铂、锑等元素。

银在地壳中的平均含量为1×10-7,在自然界多以硫化物形式存在,单独存在的辉银矿(Ag2S)很少遇见,而且主要伴生在铜矿、铅锌矿、铜铅锌矿等多金属硫化物矿床和金矿床中。在开采和提炼铜、铅、锌、镍和金主要组分时,可顺便回收银。一般含银品位达到5~10 g/t即有工业价值。

铂族元素在自然界分布量很低,铂在地壳中的平均丰度仅为5×10-9,钯为5×10-8。它们和铁、钴、镍在周期表上同属第Ⅷ族,因此也与铁、钴、镍一样,具有亲硫性。铂族元素常与铁元素共生,它们主要富集在与超基性岩和基性岩有关的铜镍矿床、铬铁矿床和砂矿床内。铜镍矿床中所含铂族元素以铂、钯为主,其次是铑、钌、锇、铱。铬铁矿中所含铂族元素以锇、钌、铱为主。铂族元素之间,以及它们与铁、钴、镍、铜、金、银、汞、锡、铅等元素之间能构成金属互化物。在自然界存在自然铂和自然钯。自然铂含铂量为84%~98%,其余为铁,及少量钯、铱、镍、铜等。自然钯含钯量为86.2%~100%,同时含有少量铂、铱、铑等。自然钌很少见,我国广东省发现的自然钌中含有91.1%~100% 的钌。铂族元素还可以与非金属性较强的第Ⅵ主族元素氧、硫、硒、碲及第V主族元素砷、锑、铋等组成不同类型的化合物。目前已知的铂族元素矿物有120多种。在一些普通金属矿物(如黄铜矿、磁黄铁矿、镍黄铁矿、黄铁矿、铬铁矿等)以及普通非金属矿物(如橄榄石、蛇纹石、透辉石等)中也可能含有微量铂族元素。

铂族元素的共同特性是具有优良的抗腐蚀性、稳定的热电性、高的抗电火花蚀耗性、高温抗氧化性能以及良好催化作用,故在工业上应用很广泛,特别是在国防、化工、石油精炼、电子工业上不可缺少的重要原料。

二、贵金属的分析化学性质

(一)化学性质

1.金

金具有很高的化学稳定性,即使在高温条件下也不与氧发生化学作用,这大概就是在自然界中能够以自然金甚至是以微小金颗粒存在的重要原因。金与单一的盐酸、硫酸、硝酸和强碱均不发生化学反应。金能够溶解在盐酸和硝酸的混合酸中,其中在王水中的溶解速率是最快的。用于分析化学中的金标准溶液通常就是以王水溶解纯金来制备,但需要用盐酸反复蒸发除去多余的硝酸或氮氧化合物。在有氧化剂存在的盐酸中,如 H2O2、KMnO4、KClO3、KBrO3、KNO3和溴水等,金也能够很好被溶解,这主要是由于盐酸与氧化剂相互作用产生新生态的氯气同金发生反应所致。

2.银

银有较高的化学稳定性,常温下不与氧发生化学作用,在自然界同样能够以元素形态存在。当与其他元素发生化学反应时,通常形成正一价的银化合物。在某些条件下也可生成正二价化合物,例如AgO和AgF2,但这些化合物不稳定。

金属银易溶于硝酸生成硝酸银,也易溶于热的浓硫酸生成硫酸银,而不溶于冷的稀硫酸中。银在盐酸和王水中并不会很快溶解,原因在于初始反应生成的Ag-以AgCl沉淀沉积在金属表面而形成一层灰黑色的保护膜,阻止了银的进一步溶解。但是如果在浓盐酸中加入少量的硝酸,银的溶解是比较快的。这是因为形成的 AgCl 又生成可溶性的[AgCl2-配离子。这一反应对含银的贵金属合金材料试样的溶解是很有用的。银与硫接触时,会生成黑色硫化银;与游离卤作用生成相应的卤化物。银饰品在空气中长久放置或佩戴后失去光泽常常与其表面上硫化物及其氯化物的形成有关。在有氧存在时,银溶解于碱金属氰化物而生成[Ag(CN)2-配离子。银在氧化剂参与下,如有Fe3+时也能溶于酸性硫脲溶液而形成复盐。

3.铂族金属

铂族金属在常温条件下是十分稳定的,不被空气腐蚀,也不易与单一酸、碱和很多活泼的非金属元素反应。但是在确定的条件下,它们可溶于酸,并同碱、氧和氯气相互作用。铂族金属的反应活性在很大程度上依赖于它们的分散性以及同其他元素,即合金化的元素形成中间金属化合物的能力。

就溶解能力而言,铂族金属粉末较海绵状的易于溶解,而块状金属的溶解是非常缓慢的。与无机酸的反应,除钯外,铂族金属既不溶于盐酸也不溶于硝酸。钯与硝酸反应生成Pd(NO32。海绵锇粉与浓硝酸在加热条件下反应生成易挥发的OsO4。钯、海绵铑与浓硫酸反应,生成相应的PdSO4、Rh2(SO43。锇与热的浓硫酸反应生成OsO4或OsO2。铂、铱、钌不与硫酸反应。王水是溶解铂、钯的最好溶剂。但王水不能溶解铑、铱、锇和钌,只有当它们为高分散的粉末和加热条件下可部分溶解。在有氧化剂存在的盐酸溶液中(如H2O2、Cl2等)于封管的压力条件下,所有的铂族金属都能被很好地溶解。

通常,碱溶液对铂族金属没有腐蚀作用,但当加入氧化剂时则有较强的相互作用。如OsO4就能够在碱溶液中用氯酸盐氧化金属锇来获得。在氧化剂存在条件下,粉末状铂族金属与碱高温熔融,反应产物可溶于水(对于Os和Ru)、盐酸、溴酸和盐酸与硝酸的混合物中,由此可将难溶的铂族金属转化为可溶性盐类。高温熔融时,常用的混合熔剂有:NaOH+NaNO3(或NaClO3)、K2CO3+KNO3、BaO2+BaNO3、NaOH+Na2O2和Na2O2等。利用在硝酸盐存在条件下的NaOH或KOH的熔融、利用Na2O2的熔融以及利用BaO2的高温烧结方法通常被认为是将铂族金属如铑、铱、锇、钌转化成可溶性化合物的方便途径。

在碱金属氯化物存在条件下,铂族金属的氯化作用同样是将其转化成可溶性化合物的最有效途径之一。

(二)贵金属分析中常用的化合物和配合物

1.贵金属的卤化物和卤配合物

贵金属的卤化物或卤配合物是贵金属分析中最重要的一类化合物,尤其是它们的氯化物或氯配合物。因为贵金属分析中大多数标准溶液的制备主要来自这些物种;铂族金属与游离氯反应,即氯化作用,被广泛用于分解这些金属;更重要的是在铂族金属的整个分析化学中几乎都是基于在卤配合物水溶液中所发生的反应,包括分离和测定它们的方法。

铂族金属配合物种类繁多,能与其配位的除卤素外,还有含O、S、N、P、C、As等配位基团,常见的有

NH3、NO、NO2、PH3、PF3、PCl3、PBr3、AsCl3、CO、CN-和多种含S、N、P的有机基团。贵金属的简单化合物在分析上的重要性远不如其配合物。对于金或银虽然形成某些稳定配合物,但无论其种类或数量都无法与铂族金属相比拟。

2.贵金属氧化物

金、银的氧化物在分析上并不重要。金的氧化物有Au2O3、Au2O,Au2O很不稳定,与水接触分解为Au2O3和Au。用硝酸汞、乙酸盐、酒石酸盐等还原剂还原Au(Ⅲ)可得到Au2O。Au(Ⅲ)与NaOH作用时,生成Au(OH)3沉淀。通常,Au(OH)3以胶体形态存在,所形成的胶粒直径一般为80~200 nm。

向银溶液中小心加入氨溶液时可形成白色的氢氧化银。当以碱作用时则有棕色的氧化银析出。氧化银呈碱性,能微溶于碱并生成[Ag(OH )2-;在300℃条件下分解为 Ag和O2

铂族金属及其化合物在空气中灼烧可形成各种组分的氧化物。由于许多氧化物不稳定,或者稳定的温度范围比较窄,或者某些氧化物具有挥发性,因此在用某些分析方法测定时要十分注意。例如,一些采用重量法的测定需在保护气氛中灼烧成金属后称重。Os(Ⅷ)、Ru(Ⅷ)的氧化物易挥发,这也是与其他贵金属分离的最好方法。铂族金属对氧的亲和力顺序依次为:Pt<Pd<Ir<Ru<Os。铂的亲和力最差,但粉末状的铂能很好与氧结合。贵金属的氧化物在溶液中多呈水合氧化物形式存在。

3.贵金属的硫化物

形成硫化物是贵金属元素的共性,但难易程度不同。其中IrS生成较难,而PdS、AgS较容易形成。贵金属硫化物均不溶于水,其溶解度按下列顺序依次减小:Ir2S3、Rh2S3、PtS2、RuS2、OsS2、PdS、Au2S3、Ag2S。在贵金属的氯化物或氯配合物(银为硝酸盐)溶液中,通入H2S气体或加入Na2S溶液可得到相应的硫化物沉淀。

4.贵金属的硝酸盐和亚硝酸盐化合物或配合物

在贵金属的硝酸盐中,AgNO3是最重要的化合物。分析中所用的银标准溶液都是以AgNO3为初始基准材料配制的。其他贵金属的硝酸盐及硝基配合物不稳定,易水解,在分析中较少应用。铂族金属的亚硝基配合物是一类十分重要的配合物。铂族金属的氯配合物与NaNO2在加热条件下反应,生成相应的亚硝基配合物。这些配合物很稳定,在pH 8~10的条件下煮沸也不会发生水解。利用这种性质可进行贵金属与贱金属的分离。

三、贵金属矿石矿物的取样和制样

含有贵金属元素的样品在分析之前必须具备两个条件:①样品应是均匀的;②样品应具有代表性。否则,无论分析方法的准确度如何高或分析人员的操作如何认真,获得的分析结果往往是毫无意义的。此外,随着科学技术的发展,贵金属资源被广泛应用于各工业部门和技术领域,由于贵金属资源逐渐减少,供需矛盾日渐突出,其价格日趋昂贵,因此对分析结果准确性的要求比其他金属要高。

贵金属矿石矿物的取样、加工是为了得到具有较好代表性和均匀性的样品,使所测试样品中贵金属的含量能够较真实地反映原矿的情况,避免取样带来的误差。贵金属在自然界中的赋存状态很复杂,又由于贵金属元素的含量较低,故分析试样的取样量必须满足两个因素:①分析要求的精度;②试样的均匀程度,即取出的少量试样中待测元素的平均含量要与整个分析试样中的平均含量一致。实际上贵金属元素在矿石中的分布并不均匀,往往集中在少数矿物颗粒中,要达到取出的试样与总试样完全一致的要求是很难做到的。因此,只能在满足所要求的分析误差范围内进行取样,增加取样量,分析误差可能会减小。试样中贵金属矿物的破碎粒度与取样量有很大关系,粒度愈大,试样愈不均匀,取样量也应愈大,因此加工矿物试样时应尽可能磨细。为了达到一定的测量精度,除满足上述取样量的条件外,还应满足测定方法的灵敏度。

一般的矿样,可按常规方法取样、制样。金多以自然金的形式存在于矿石矿物中,它的粒度变化较大,大的可达千克以上,而微小颗粒甚至在显微镜下都难以分辨。金的延展性很好,它的破碎速度比脉石的破碎速度慢,因此对未过筛的和残留在筛缝中的样品部分绝对不能弃之,此部分大多含有自然金。金矿石的取样与加工一般按切乔特经验公式进行。对于比较均匀的样品,K取值为0.05,一般金矿石样品,K取值为0.6~1.5。

对于较难加工的金矿石,在棒磨之前加一次盘磨碎样并磨至0.154mm,因为棒磨机的作用是用钢棒冲击和挤压岩石再磨细金粒,能满足一般金粒较细的试样所需的破碎粒度。含有较粗金粒的试样,用棒磨机只能使金粒压成片状或带状,达不到破碎的目的。而盘磨机是利用搓压的作用力使石英等硬度较大的物料搓压金粒来达到破碎的目的。

在金矿样的加工过程中,应注意以下几个方面:

(1)如果矿样量在1kg以下,碎样时应磨至200目。一半送分析用,一半作为副样。如果矿样量在1 kg以上,按加工流程进行破碎,作基本分析的样品重量不应少于500~600 g。

(2)若样品中含有明金时,应增设80目过筛和筛上收金的过程。

(3)对于1∶20万区域化探水系沉淀物样品,应将原分析样混匀后分取40g,用盘磨粉碎至200目,混匀后作为金的测定样。

(4)在过筛和缩分过程中,任何时间都不能弃去筛上物和损失样品。

(5)所使用的各种设备每加工完一个样品后必须彻底清扫干净,并认真检查在缝隙等处有无金粒残留。

(6)矿样经棒磨机粉碎至200 目后,送分析之前必须再进行混匀,以防止因金的密度大在放置时间过久或运送过程中金下沉而导致样品不均匀。

由于金在矿石中的不均匀性,要制取有代表性、供分析用的矿样,应尽可能地增大矿石取样量。在磨样过程中,对分离出粗粒的金应分别处理。其他贵金属矿样的取样与加工要比金矿石的容易。

为了获得准确的分析结果,贵金属试样在分析之前,取样与样品的加工,试样的分解将是整个分析工作中的重要环节。另一方面,由于在大多数的分析方法中,获得的分析结果常常是通过与已知的标准物质的含量,包括标准溶液和标准样品进行比较获得的,因此,准确的分析结果同样也依赖于贵金属标准溶液的准确制备。

四、贵金属矿样的样品处理技术

贵金属矿石矿物的分解有其特殊性,是分析化学中的难题之一。因为多数贵金属具有很强的抗酸、碱腐蚀的特点,常用的无机溶剂和分解技术难以分解。

含铑、铱和钌等试样,在常温、常压,甚至较高温度、压力下用王水也难以分解。

砂铂矿多由超基性岩体中的铬-铂矿风化次生而成,其密度及硬度极高、化学惰性极强,在高温、高压条件下溶解也较慢。

锇铱矿是以锇和铱为主的天然合金,晶格类型的差别较大(铱为等轴晶系,锇为六方晶系)。含锇高时称为铱锇矿,呈钢灰色至亮青铜色;含铱高时称为锇铱矿,呈明亮锡白色。它们的密度都很大,性脆且硬,含铱、钌高时磁性均较强,锇高时相反。化学性质也都很稳定,于王水中长时间煮沸难以被分解。

为了分解这些难溶物料,需要引入一些特殊的技术,如焙烧预处理技术、碱熔融技术、加压酸消解技术等。

(一)焙烧预处理方法

贵金属在矿石中除以自然金、自然铂等形式存在外,还以各种金属互化物形式存在,并常伴生在硫化铜镍矿和其他硫化矿中。用王水分解此类矿样时,由于硫的氧化不完全,易产生元素硫,并吸附金、铂、钯等,使测定结果偏低,尤其对金的吸附严重,故需要先进行焙烧处理,使硫氧化为SO2而挥发。焙烧温度的控制是很重要的,温度过低,分解不完全;温度过高,会烧结成块,影响分析测定。常用的焙烧温度为600~700℃,焙烧时间与试样量和矿石种类有关,一般为1~2h。不同硫化矿的焙烧分解情况不同,其中黄铁矿最易分解,其次是黄铜矿,最难分解的是方铅矿。以下是几种贵金属矿石的焙烧处理方法。

(1)含砷金矿的焙烧。先将矿石置于高温炉中,升温至400℃恒温2h,使大部分砷分解、挥发,继续升温至650℃,使硫和剩余的少量砷完全挥发。于矿石中加入NH4NO3、Mg(NO32等助燃剂,可提高焙烧效率,缩短焙烧时间。如果金矿中砷的含量在0.2% 以上,且砷含量比金含量高800倍的条件下焙烧时,会生成砷和金的一种易挥发的低沸点化合物而使金损失,此时的焙烧温度应控制在650℃以下。当金矿石中硅含量较高时,加入一定量NH4HF2可分解SiO2

(2)含银硫化矿的焙烧。先将矿石置于高温炉中,升温至650℃,恒温2h,使硫完全挥发。当矿石中硅含量较高时,即使加入NH4HF2,由于焙烧过程中生成难溶的硅酸银,使测定结果严重偏低。为此,用酸分解焙烧试样时,加入HF以分解硅酸银,可获得满意的结果。

(3)含铂族元素硫化矿的焙烧。与含金硫化矿的焙烧方法相同。

(4)含锇硫化矿的焙烧。试样进行焙烧时,易氧化为OsO4形式挥发损失,于焙烧炉中通入氢气,硫以H2S形式挥发;或按10∶1∶1∶1比例将矿石、NH4Cl、(NH42CO3、炭粉混合后焙烧,可加速硫的氧化,对锇起保护作用。

(二)酸分解法

贵金属物料的酸分解法是最常用的方法,操作简便,不需特殊设备。常用的溶剂是王水,它所产生的新生态氯具有极强的氧化能力,是溶解金矿和某些铂族矿石的有效试剂。溶解金时可在室温下浸泡,加热使溶解加速。溶解铂、钯时,需用浓王水并加热。此外,分解金矿的试剂很多,如HCl-H2O2、HCl-KClO3、HCl-Br2等。被硅酸盐包裹的矿物,应在王水中加少量HF或其他氟化物分解硅酸盐。酸分解方法不能用于含铑、铱矿石的分解,此类矿石只有在高温、高压的特定条件下强化溶解才能完全溶解。

(三)碱熔法

固体试剂与试样在高温条件下熔融反应可达到分解的目的。最常用的是过氧化钠熔融法,几乎可以分解所有含贵金属的矿石,但对粗颗粒的锇铱矿很难分解完全,常需要用合金碎化后再碱熔才能分解完全。本法的缺点是引入了大量无机盐,对坩埚腐蚀严重,又带入了大量铁、镍。使用镍坩埚还能带入微量贵金属元素。此法多用于无机酸难以分解的矿石。

五、贵金属元素的分离和富集方法

贵金属元素在岩石矿物中的含量较低,因此,在测定前对其进行分离富集往往是必要且关键的一步。贵金属元素的分离和富集有两种方法;一种是干法分离和富集——火法试金;一种是湿法分离和富集——将样品先转为溶液,然后采用沉淀、吸附、离子交换、萃取、色层等方法进行分离富集贵金属与贱金属分离,主要有共沉淀分离法、溶剂萃取法、离子交换分离法、活性炭分离富集法、泡沫塑料富集法及液膜分离富集法等。目前应用最广泛的是火试金法、泡沫塑料法、萃取法。具体方法详见任务2、任务3、任务4的相关内容。

六、贵金属元素的测定方法

(一)化学分析法

1.重量法测定金与银

将铅试金法得到的金、银合粒,称其总量。经“分金后”得到金粒,称重。两者重量之差为银的重量。

为了减少金在灰吹中的损失和便于分金,在熔炼时通常加入毫克量的银。如果试样中含金量较高,加入的银量必须相应增加,以达金量的3倍以上为宜。低于此数时,分金不完全,且银不能完全溶解,影响测定结果。

在实际应用中,不同含金量可按表7-1所示的银与金的比例加入银,可满意地达到分金效果。

表7-1 银与金的比例

如合粒中含银量低、金量高时,可称取两份试样,一份不加银,所得合粒称重,为金银合量。另一份加银,分金后测金。二者重量之差为银量。亦可先将金、银合粒称重,再加银灰吹,然后进行分金,测得金量。差减法得银量。

分金可采用热硝酸(1∶7),此时合粒中的银、钯以及部分铂溶解,而金不溶并呈一黑色的整粒留下来。如果留的下金粒带黄色,则表示分金不完全,应当取出,补加适量银,包在铅片中再灰吹,然后分金。

用硝酸(1∶7)分金后,金粒中还残留有微量银,可再用硝酸(1∶1)加热数分钟除去。

2.滴定法

在贵金属元素的滴定法中,主要利用贵金属离子在溶液中进行的氧化还原反应、形成稳定配合物反应、生成难溶化合物沉淀或被有机试剂萃取的化合反应。被滴定的贵金属离子本身多数是有颜色的,而且存在着复杂的化学形态和化学平衡反应,故导致滴定法的应用有一定的局限性。

金的滴定法主要依据氧化还原反应,包括碘量法、氢醌法、硫酸铈滴定法、钒酸铵滴定法及少数催化滴定法和原子吸收-碘量法联合的分析方法。其中碘量法和氢醌法在我国应用最普遍,它们与活性炭或泡塑吸附分离联用,方法的选择性较好,且可测得微量至常量的金,已成为经典的测定方法或实际生产中的例行测定规程。由于样品的成分的复杂性,故用活性炭吸附分离-碘量法测定金时,还应针对试样的特殊性采取相应的预处理手段。例如,含铅、银高的试样,可加入5~7g硫酸钠,煮沸使二氯化铅转化为硫酸铅沉淀过滤除去,银用盐酸溶液(2+98)洗涤,可避免氯化银沉淀以银的氯配离子形式进入溶液中而被活性炭吸附。含铁、铅、铜、锌的试样,在滴定时加入0.5~1 g氟化氢铵可掩蔽50mg铁、铅,3~5mL的EDTA溶液(25g/L)可掩蔽大量铅、铜、锌,但需立即加入碘化钾,以避免Au(Ⅲ)被还原为Au(Ⅰ)。含硫高时,于马弗炉中500℃温度下焙烧3h后再于650~700℃恒温1~2h,可避免金的分析结果偏低。含锑的试样,用氢氟酸蒸发2次,可消除其对金的影响。试样中含铂和钯时,会与碘化钾形成红色和棕色碘化物,且消耗硫代硫酸钠,可于滴定时加入5mL硫氰酸钾溶液(250g/L),使之形成稳定的配合物而消除干扰。用碘量法测定金的误差源于多种因素:金标准溶液的稳定性、活性炭吸附金的酸度、水浴蒸发除氮氧化物的条件、淀粉指示剂用量、滴定前碘化钾的加入量、分取试液和滴定液的浓度、标定量的选择等,因此应予以注意。

关于银的化学滴定法,应用最普遍的是硫氰酸钾(铵)和碘化钾沉淀滴定法,其次是硫代硫酸钠返滴定法、硫酸亚铁氧化还原滴定法和二硫腙萃取滴定法等。

硫氰酸钾滴定法测定银:将试金所得的金、银合粒用稀硝酸溶解其中的银,以硫酸铁铵为指示剂,用硫氰酸钾标准溶液滴定至淡红色,即为终点。其主要反应式如下:

Ag+KCNS→K+AgCNS↓

Fe3++3KCNS→3K+Fe(CNS)3

在铂族金属的滴定中,以莫尔盐还原Pt(Ⅳ),用钒酸铵返滴定法或二乙基二硫代氨基甲酸钠滴定法的条件苛刻,选择性差,不能用于组成复杂的试样分析中。于pH为3~4酸性介质中,长时间煮沸的条件下,Pt(Ⅳ)能与EDTA定量络合,在乙酸-乙酸钠缓冲介质中,用二甲酚橙作指示剂,乙酸锌滴定过量的EDTA,可测定5~30mg Pd。利用这一特性,采用丁二肟分离钯,用酸分解滤液中的丁二肟,可测定含铂、钯的冶金物料中的铂。Pd(Ⅱ)的滴定测定方法较多,常见的是利用形成难溶化合物沉淀和稳定配合物的反应。在较复杂的冶金物料中,采用选择性试剂掩蔽钯,二甲酚橙作指示剂,锌(铅)盐滴定析出与钯等量的EDTA测定钯的方法较多。

(二)仪器分析法

贵金属在地壳中的含量很低,因此各种仪器分析方法在贵金属的测定中获得了非常广泛的应用。主要有可见分光光度法、原子吸收光谱法、发射光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法等。具体的应用请参阅本项目的任务2、任务3、任务4的相关内容。

七、贵金属矿石的分析任务及其分析方法的选择

贵金属矿石的分析项目主要是金、银、铑、钌、钯、锇、铱、铂含量的测定,除精矿外,一般矿石中贵金属的含量都比较低,因此,在选择分析方法时,灵敏度是需要重点考虑的因素。一般,银的测定主要用原子吸收光谱法和可见分光光度法,且10 g/t以上含量的不需要预富集,可直接测定。可见分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法在金的测定上都获得了广泛的应用。金的测定一般都需要采取预富集手段。铑、钌、钯、锇、铱、铂在矿石中含量甚微,因此对方法的灵敏度要求较高。目前,电感耦合等离子体质谱法在铑、钌、钯、锇、铱、铂的测定的应用已经越来越广泛和成熟。另外光度法、电感耦合等离子体发射光谱法也在铑、钌、钯、锇、铱、铂的测定中发挥了重要作用。

技能训练

实战训练

1.学生实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成贵金属矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

⑽ 任务矿石中钯含量的测定

——活性炭吸附DDO光度法

任务描述

钯是铂族元素之一。在地壳中含量极微,属“超痕量元素”,比“稀有元素”还少,比某些“分散元素”分散。铂族元素的分析,是现今人们公认的一个难题。勘查地球样品中的铂族元素的含量低,基体复杂,样品均匀性差,干扰因素多;且铂族元素本身具有相似的电子层结构和化学性质,很多分析试剂能同时与多种铂族元素发生相似的反应并产生干扰,很难找到一些特效的分析试剂。加之,它们又多伴在一起,因此分离和测定十分困难。本次任务用DDO光度法测定矿石中的钯含量,通过本次任务,掌握两个知识点:一是钯的富集与分离,二是钯的显色测定。

任务实施

一、试剂配制

(1)石油醚-三氯甲烷混合溶液(3 +1):石油醚的沸程在60~90℃或90~120℃为佳。

(2)DDO溶液(2g/L):称取0.2g DDO溶于100mL丙酮中。

(3)氯化钠溶液(200g/L):称取20g氯化钠,溶于100mL水中。

(4)乙酸丁酯。

(5 )钯标准溶液:称取0.1000 g光谱纯钯片于500mL烧杯中,加20mL王水,于砂浴上加热溶解,然后以少量盐酸吹洗杯壁,加入5滴氯化钠溶液(200g/L),并移到水浴上蒸干,加2mL盐酸(1 +1),蒸发到干,反复处理三次,取下用盐酸溶液(8mol/L)溶解,移入1L容量瓶中,并用盐酸溶液(8mol/L)定容,此贮备液含钯100μg/mL。吸取10mL贮备液于 500mL 容量瓶中,以并用盐酸溶液(8mol/L )定容,此贮备液含钯2μg/mL。

二、分析步骤

称取10~30g试样于瓷舟中,在550~650℃的高温炉中焙烧1~2h,中间搅拌2~3次,冷后移入250mL烧杯中,加入50mL王水(1+1 ),摇匀,盖上表面皿,在电热板上加热分解15~20min,取下表面皿,低温蒸至黏稠状,加HCl重复蒸发两次(每次5mL),加水60mL稀释,过滤。用水洗净烧杯及沉淀,在滤液中加0.3 g活性炭(可滴加少量金标准溶液)搅拌均匀,放置过夜。用定性滤纸过滤并擦净烧杯,再用水洗沉淀约15 次。将活性炭连滤纸转移至瓷坩埚中,放入马弗炉低温升至650℃灰化完全。

在含钯灰分的瓷坩埚中加王水5mL,水浴加热溶解,加3 滴氯化钠溶液(200g/L),继续水浴蒸干,加盐酸2~3次赶硝酸。残渣用15mL盐酸溶液(8mol/L)溶解后,并将此溶液移入25mL比色管中(至20mL)。

加乙酸丁酯4mL萃取1min,分层后弃去有机相。在水相中加入1mL DDO溶液(2g/L),摇匀,放入60~70℃的水浴中保温10min,然后冷却(或在25℃的室温中放置1h),加入5mL石油醚-三氯甲烷混合溶剂,振摇1min,分层后,吸取有机相,用1cm吸收池,在波长450 nm处以试剂空白作参比,测定其吸光度。

钯工作曲线的绘制:分别吸取含钯0、2.00、4.00、8.00、12.00、20.00μg的钯标准溶液于25mL比色管中,用盐酸溶液(8mol/L)稀释至20mL,以下操作同试样分析步骤。

三、结果计算

钯的含量按下式计算:

岩石矿物分析

式中:w(Pd)为钯的质量分数,μg/g;m1为从工作曲线上查得试样溶液中钯的质量,μg;m0为从工作曲线上查得试样空白中钯的质量,μg;m为称取试样的质量,g。

四、质量记录表格

测定完成后,填写附录一中质量记录表格3、4、8。

任务分析

一、方法原理

试样先经灼烧使某些不溶于王水的钯矿物转变为能在王水中溶解的单体金属,然后用王水分解,以HCl驱除大部分HNO3后,加水稀释,滤去残渣。滤液用水稀释使溶液中含酸量每100mL不超过5mL,分数次加入活性炭以使钯吸附完全。滤出活性炭灰化后,溶于王水。先用乙酸丁酯萃取Au及Fe等杂质。然后在水相中使Pd与DDO反应。Pd(Ⅱ)与双十二烷基二硫代乙二酰胺(DDO)生成黄色配合物,用石油醚-三氯甲烷混合液萃取测定钯。

二、干扰情况

在本法的显色条件下,80μg Au(Ⅲ)、40μg Rh(Ⅱ)、20μg Ir(Ⅳ)、20mg Ag(Ⅰ)、100μg Se(Ⅳ)、40μg Te(Ⅳ)、20mg Fe(Ⅲ)、20mg Cu(Ⅱ)、50mg Ni(Ⅱ)、50mg Pb(Ⅱ)对钯的测定不干扰。硝酸根的存在对钯测定有严重干扰,导致结果偏低。高氯酸根的存在对测定无影响。

所取试样中钯含量小于5μg时,采用目视比色本法可测低至0.01 g/t的试样。

三、配制贵金属标准溶液的注意事项

在贵金属分析化学中,通常使用贵金属的氯化物或氯离子配合物与各种试剂发生反应,因为贵金属氯化物和氯配合物的制备方法容易、稳定性好,而且具有确定的价态和形态。其他盐类,如硝酸盐、硫酸盐、过氯酸盐等不够稳定,有的组成复杂,或与试剂反应难于进行。因此贵金属的标准溶液(除银一般是以AgNO3形式配制外)大都是以氯配合物的形式制备。

采用纯度在99.95% 以上的金属片或粉末以王水或(盐酸+氧化剂)溶解时,溶解之后应除去氧化剂,如用盐酸除硝酸和氮的氧化物时,应在沸水浴上小心蒸发,并加入氯化钠或氯化钾作保护剂;以盐酸溶液稀释定容时,应控制盐酸浓度,以便保证较高的氯离子浓度,避免价态的变化和发生水解,以保证标准溶液能够长期储存。

贵金属标准存储溶液应具有较高的金属离子浓度,以便在储存时不易发生浓度的变化。分析用标准工作溶液常常由存储溶液稀释制备,但在常温下保存时间一般不得超过2个月。

贵金属标准溶液的储存是一个重要的问题。影响贵金属标准溶液稳定性的主要因素有两个方面:贵金属配合物离子的稳定性和容器对贵金属离子的吸附。配合物离子稳定性依赖于酸度和氯离子浓度。对于锇、钌标准溶液的储存,还应考虑挥发损失的问题,在盐酸(1mol/L)介质中,钌溶液保存在石英玻璃或玻璃容器里可稳定4个月,4个月后会损失25%;锇溶液只能稳定2个月,2个月后会损失50%。银标准溶液应避光保存。容器对贵金属离子的吸附与容器的种类和溶液酸度有关,溶液的酸度越高,器壁吸附越少。

实验指南与安全提示

DDO和Pd的反应稍慢,且试剂又不溶于水和盐酸中,故加入DDO试剂应沿着管壁缓缓加入,并激烈振荡两次,让试剂很好地分散于溶液中,并放置30min,或在60~70℃的水浴中保温10min。DDO与Pd(Ⅱ)形成黄色配合物,其配位比为2∶1,配合物被有机溶剂萃取后,色强非常稳定,15 h内无变化。

DDO对Pd有很高的选择性。除100μg以上的金影响测定外,Fe、Co、Ni、Pb、Ir、Cu、Ag对Pd的测定无干扰。Pt(Ⅳ)、Rh(Ⅲ)若无强还原剂存在也无干扰。

当Pt、Pd的含量较低时,可采用目视比色测定。Pt、Pd与DDO的有色配合物在有机相中24 h内稳定。

加入DDO溶液的量要求准确,因试剂本身有浅绿色。

Pt(Ⅳ)不与DDO反应,但加入SnCl2还原为Pt(Ⅱ)就立即生成红色螯合物,可稳定24h以上。

DDO的制备:称取15 g二硫代已二酰胺于锥形瓶中,加入100mL乙醇溶解,在另一烧杯中,称取46 g月桂胺,加入50mL乙醇溶解,将上述溶液合并,混匀,盖上带玻璃管的橡皮塞(作空气冷凝管),在水浴上加热,保持微沸30~40min,待无氨味时取出,倒入烧杯中,用冰水冷却,抽滤,用冰冷却过的乙醇洗涤至无绿色,取出沉淀于另一烧杯中,用100mL丙酮溶解后,移到锥形瓶(带空气冷凝管)中,加入一小勺活性炭,在水浴上加热5~10min,趁热抽滤,用丙酮洗涤,将滤液置于蒸发皿上,使其自然干燥。若颜色不正常时,可用丙酮重结晶一次。

由于钯的化合物均易分解,所以在蒸干时要特别小心,否则结果严重偏低。

活性炭吸附钯应在低酸度下进行,故溶矿过程中尽量蒸去多余的酸。

显色反应应在盐酸(>6mol/L)介质中进行。

拓展提高

镍锍试金法测定矿石中的贵金属

镍锍试金法(也称硫化镍试金法)是以硫化镍、硫化铁(和硫化铜)组成的锍来捕集贵金属,它适合于捕集金和所有铂族元素。也可用于其他试金法熔炼有困难的高硫高镍样品。硫化镍有足够大的密度(5.3g/cm3),便于与熔渣分开,并容易粉碎。镍锍扣捕集贵金属的能力很强,试金扣的量在12g以上能将50g样品中的贵金属捕集完全。镍锍试金法中熔渣的硅酸度在1.5~2.0之间为好。但是要注意渣的是酸度不要太大,否则熔渣很黏,不利于锍扣与熔渣的分离。锍扣一般采用盐酸溶解,硫成硫化氢逸出,铜、铁、镍(包括银)以氯配合物形式进入溶液,金和铂族金属留在残渣内。浓盐酸溶解锍扣时,锇的损失比较大,铂、钯也会有一定的损失。用稀盐酸溶解或采用封闭溶解法可减少这些元素的损失。镍锍试金法测定金的重现性不太好,其中既有金的捕集效率问题,也有金在盐酸溶解时的损失问题。采用碲共沉淀法可以改善金的回收率和重现性。镍锍试金法需要加入硫黄作为还原剂和硫化剂,硫黄的加入量要适当。加得少了,在用盐酸溶解扣时,锇、钌的损失会增加。过量了又给试金扣的溶解带来困难。为了避免硫黄过剩,可以用硫化铁代替一部分硫黄,而且这样的试金扣在水中能自行粉化。

一、锍镍试金法的特点

1.锍镍试金法优点

(1)可以捕集所有的铂族元素。

(2)不同类型的样品,其熔剂的组成变化相对较小。

(3)对含硫和镍的样品不需要事先除去。

(4)熔剂与样品的比例较小,所以可以处理较大量的样品。

(5)硫化镍扣可直接用于激光剥蚀法。

2.锍镍试金法的局限性

(1)空白较高。有时有些元素的空白值可达数百个pg/g水平。尤其是镍试剂的空白较高,建议使用纯度较高的羰基镍粉。

(2)Os以OsO4的形式挥发。

(3)在硫化镍扣用盐酸溶解时,有的贵金属元素比如钌和钯会以氯化物或含氯的配合物形式挥发损失。

(4)个别元素会由于硫化镍捕集效率低或碲共沉淀的不完全分离而导致回收较差(<90%)。

(5)盐酸溶解硫化镍扣时,会产生大量硫化氢气体,需要有效的排烟气设备。

采用减小硫化镍试金扣的方法可以降低试剂空白。早先的硫化镍试金法一般要加入10 g以上的镍,现在一般大约为几克(根据样品中铂族元素含量范围和样品基体性质而定)。

二、镍锍试金法配料

配料是镍锍试金分析中关键的一步。首先要了解所测样品的种类,以确定熔料的配方。

根据试料中的物质组成,按照预期生成熔渣的硅酸度,通过反应式计算,可获得配料中各种试剂的加入量。

1.一般地质样品配料大体范围

(1)岩石、沉积物、土壤类:如石英、辉石、橄榄石、方解石、沉积岩、土壤、水系沉积物、海洋沉积物等,配方一般为(20g样):Na2B4O5(OH)420~25g,Na2CO310~14g,Ni 2~3g,SiO21~2g,面粉0.5~1g。

(2)矿石类样品等:如铬铁矿、超基性岩、黄铁矿、黄铜矿、闪锌矿、镍矿等,配方一般为(20g样):Na2B4O5(OH)4或Li2B4O725g,Na2CO315~20g,Ni 3.5~6g,SiO23~6g,面粉2g。

许多铬铁矿中往往含有较多的铂族元素,而铬铁矿是很难熔融的矿物,熔剂配方对铬铁矿的熔解很关键。可以加入偏磷酸钠使铬铁矿完全熔融,其熔剂配方为:样品10g,SiO29g,(NaPO3x15g,Li2B4O730g,Ni 7.5g,S 4.5g。熔融温度必须达到1200℃。

2.针对不同物料调整配方的要点

(1)硅酸盐类样品:硅酸盐样品中二氧化硅占一半以上,还有少量钙、镁、铝,需要加入较多的碳酸钠,适量的硼砂。

(2)碳酸盐类样品:此类样品的主要成分为碳酸钙、碳酸镁,在熔样时分解逸出二氧化碳成为氧化钙、氧化镁,因此在熔样时必须加入较多酸性熔剂二氧化硅和较多硼砂。

(3)氧化矿样品:氧化矿样品指含有较多赤铁矿、磁铁矿的样品,具有一定的氧化力,能消耗掉部分还原剂,配料时需加以考虑。

(4)硫化矿样品:含有较多的硫化物,还原力较强。需加入较多碳酸钠,减少硫的加入量。

铜精矿、硫化铜镍矿、辉锑矿、镍矿、黄铁矿等矿种常含有铂族元素和金银,熔矿相对困难,配料时需加大碳酸钠和二氧化硅的量。

三、应用实例

锍镍试金-ICP-MS测定矿石中的贵金属大多数锍镍试金-ICP-MS分析流程不包括锇的测定,因为锇被氧化成四氧化锇,挥发损失。以前先将锇蒸馏出,再用王水溶解残渣测锇。这种方法流程过长,不利于大批量样品分析。改进的镍锍试金-碲共沉淀ICP-MS测定铂族元素的方法,采用封闭溶解贵金属硫化物滤渣与同位素稀释法测锇相结合,解决了包括锇在内的全部铂族元素和金的测定,避免了锇的蒸馏分离和(或)单独测定,简化了分析流程。该方法要点如下:

1.样品处理步骤

(1)取样20g 于玻璃三角瓶中,加入混合熔剂,充分摇动混匀后,转入黏土坩埚中。

(2)准确加入适量锇稀释剂,覆盖少量熔剂,放入已升温至1100℃的马弗炉中熔融1.5 h。

(3)取出坩埚,将熔融体注入铁模,冷却后,取出锍镍扣,粉碎。转入烧杯,加入60ml浓盐酸,加热溶解至溶液变清且不再冒泡为止。

(4)加入1mL碲共沉淀剂(含碲0.5mg),1mL二氯化锡(1mol/L)溶液,加热0.5 h并放置数小时使碲凝聚。

(5)用0.45μm滤膜负压抽滤,2mol/L盐酸洗沉淀数次。

(6)将沉淀和滤膜一同转入带螺帽的Teflon封闭溶样器,加入1mL王水,密封,于约100℃电热板上溶解2~3 h。

(7)冷却后转入10mL比色管中,水定容待测。

2.铂族元素的测定

样品溶液直接用ICP-MS测定,钌、铑、钯、铱、铂用常规标准溶液标化测定。锇采用同位素稀释法测定。内标采用10 ng/mL的镉、铊标准溶液。虽然采用了密封溶渣的方法,但对锇进行同位素稀释测定仍是必不可少的。一方面是因为密封溶解不能确保没有气体泄漏;另一方面,即便是溶解过程没有锇的泄漏损失,由于不同氧化程度的锇在ICP技术中灵敏度的巨大差异,采用标准溶液标化会造成分析结果的极大误差。

阅读材料

贵金属首饰分析

在贵金属首饰中,黄金首饰占据主导地位,银饰品由于其白色和低廉的价格而成为普通百姓欢迎的主要原因。随着人们生活的提高,铂金首饰的消费也迅速增长。当今的黄金首饰市场已趋于国际化,生产和消费已超出地域限制的趋势。通常,广大消费者关心的是所购买的金或铂金首饰是否符合标示的含金或含铂量,同时希望有一种简单易行的非破坏性鉴别方法;对于首饰生产厂家,应该以诚信为本,从生产的源头即饰品材料的成分分析进行把关,使其质量达到国家规定的标准,避免不符合产品出厂;同时,在饰品进入市场之后,有关部门应加强监管,不定期进行抽样化验,禁止不合格产品或假货在市场上销售。只有这样,才能维护首饰消费者的合法利益。

一、金首饰的成色

在首饰交易中,金的成色常用“开(K)”表示,[“开”(K)源于英文词carat,称“克拉”,原用于表示宝石的质量单位,1ct=0.200g];其纯度以千分比表示。纯金为24开,也即成色是1000‰。以此推算,1 K的含金量=41.66‰,18 开金就是含有750‰的金。由于41.66‰为无限循环小数,因此不同地域就出现不同的K金标准。国际标准化组织(ISO )推荐的22 K、18 K、14 K 和9 K 饰品金的成色分别含金916‰、750‰、585‰和375‰。我国黄金首饰分类标准如表,基本上与国际标准接轨。由于不同的购买目的,每个国家对黄金首饰成色的要求大不相同,表7-6列出了我国黄金首饰成色分类标准(GB11887-1990 )。

表7-7列出了黄金的成色等级及其适用地域范围。

表7-5 我国黄金首饰成色分类标准

表7-6 黄金成色等级和适用范围

二、金首饰的鉴定

从严格的意义上来说,首饰的鉴定和分析有着不同的含义。鉴定意味着是对饰品真假的区别或鉴别,它既要维持原有饰品的原貌,又能快速地对饰品做出比较正确的结论。而分析往往意味着是通过某种现代仪器手段或方法对首饰的组成和(或)含金量给出公正和正确的分析结果。

鉴定常常根据金的物理性质如颜色、密度和硬度等进行测估。在金首饰的鉴定中,试金石法和密度法的应用由来已久。前者现在称为“条痕比色法”,即将金首饰在试金石(一种特殊的硅酸盐石头)上轻轻划痕,然后再与“对牌”(即已知金成色的标准)在试金石上的划痕颜色比较。据称有经验的鉴定者可以将金成色控制在1% 的误差内。这种方法在以前银行和旧首饰的收购中常常使用,因为具有立等可取的快速特点。密度法的应用据说是阿基米德在为国王金冠打造中是否被掺假一事的冥思苦想中,因进浴池洗澡受满池水的溢出启发而发现了“浮力定律”,并由此揭开了假金皇冠的秘密。自此之后,密度法的鉴定就有了科学依据。

采用密度法鉴定金饰品,首饰应该洁净干燥,设法避免在液体中称量时附着在首饰上的气泡,最好是按照国家标准《贵金属及其合金密度的测试方法》(GB/T1423 -1996)进行。值得注意的是,该法不适用于空心首饰和镶嵌首饰。当然,也不适用于金包钨的假首饰,因为钨和金的密度相近。

三、金首饰的分析及含金量的精密测定

(一)无损分析

利用某些现代仪器对贵金属饰品的成色进行无损检测被认为是比较理想的方法,因为它具有不破坏样品、无污染、快速和准确的特点,同时又能提供样品中多种杂质元素及其含量数据。例如,借助黄金首饰标样,X射线荧光光谱法(XRF )广泛用于饰品的组成和元素含量的测定,并且已被制定成国家标准检测方法。然而这一方法的测定结果仍受到饰品表面的光滑度、形状、大小的影响以及因样品照射位置、面积的差异导致主、次元素荧光强度不同程度的损失,于是有不少改进的测定方法报道,例如无标样的XRFA方法、XRF-密度校正法等,从而在一定程度上提高了方法的检测精度和扩大了方法的适用范围。

(二)化学分析

多姿多彩的金饰品皆源于金基合金材料,材料成分的准确分析是金饰品质量控制的根本保证。因此,仅仅依靠无损分析法显然是不现实的,因为单就制备用于分析这些合金的标样就是一件十分复杂和消耗人力、资金的工作。如果把金饰品的分析纳入贵金属合金材料分析范畴的话,原则上贵金属合金材料中的许多化学分析或仪器分析方法都能适用。这些分析方法既能够准确地测定主金属组分的含量,也能够提供次成分乃至杂质元素的分析结果。如AAS、ICP-AES法等。

应该指出的是,广大消费者最关心的是饰品中主成分金、铂、钯、银等的含量,其他金属成分对构成首饰的成本与其工艺所体现的价值相比都微不足道。正因为如此,贵金属饰品的主成分分析关键在于测定方法的准确与否。对于金(或银)的主成分分析,火试金重量法是具有高准确度的测定方法之一,也是传统的金银饰品分析检测方法。与火试金重量法相比,容量法、电位滴定法和库仑分析法的操作手续是简单的,尤其是具有高准确度、精密度和不需要标准样品的库仑分析法,对于贵金属饰品主含量的测定是特别适宜的。

四、铂金首饰的成分

银白色的首饰高贵典雅,然而用银打造的首饰佩戴不久便会晦暗而丧失光泽。金属铂的亮白色虽然不及银,但却能够长期经受腐蚀并保持其白色,因此铂金首饰受到人们的青睐。目前,铂首饰主要用纯铂和铂合金制作,也有含铂的白色K金,例如含有10% Pt、10% Pd、3% Cu和2% Zn的18 K金。所谓白色K金就是为了取代昂贵的铂而在金基体中加入能够使金漂白的元素,如 Ag、Al、Co、Cr、In、Fe、Mg、Mn、Ni、Pd、Pt、Si、Sn、Ti、V、Zn等,但白色K金大多数是Au-Pd-Ag系合金,其中可能还含有Cu、Ni、Fe、Mn等。含Ni的白色K金价格便宜,但Ni对人体皮肤具有潜在的毒性问题颇受争议,为保护消费者的利益,某些欧洲国家今年来已制定了有关制造和销售与皮肤接触的含镍首饰的法令,并制定了相关标准。白色K金依旧按金的成色区分,而对铂首饰的成色还没有硬性规定的标准。由于铂的供给受到资源的限制,近年来价格逐渐攀升,几乎接近金价的3 倍,这样一来,铂首饰的鉴别与分析更令人关注。

五、铂金首饰分析

到目前为止,还缺乏一种简单的、像鉴别黄金首饰那样来鉴别铂首饰的方法。一些分析工作者试图采用像无损分析金饰品那样,用X射线荧光光谱法来进行分析,但是铂饰品成分比较复杂,难以获得用作比较的标准样品。曾有利用XRF金标样的多元素回归方程,对Pt、Pd的荧光强度进行修正后并当作Au、Ag的荧光强度,再以计算机编程计算铂制品中Pt、Au、Pd、Ag、Cu、Ni等元素含量的X射线荧光光谱测定方法,但其准确度和适用性仍有待研究。

在溶液中利用氯化铵将Pt(Ⅳ)沉淀成(NH)2PtCl6的重量法现在已经很少用于分析工作中,因为(NH)2PtCl6沉淀不很完全,且Ir、Rh存在时共沉淀。然而对于铂饰品这一特殊分析对象,经改进的(NH)2PtCl6-光谱(或原子吸收)法则能够适用,而且还被制定为铂首饰合金分析的标准方法。铂首饰中铂含量的测定,采用精密库仑滴定分析法是较好的选择。该法不需要铂首饰标准样品,测定方法的选择性好,准确度和精密度都很高,而且测定手续简便快速。

阅读全文

与矿物中微量贵金属的测定相关的资料

热点内容
提请召开股东大会文件范文 浏览:88
企业中国人民银行外汇备案 浏览:905
杠杆最大力臂 浏览:763
总统大选贵金属 浏览:220
中小企业融资成本高的对策 浏览:637
期货投机度计算 浏览:649
西安注册金融类公司 浏览:985
南京期货交易所 浏览:373
pg外汇集团公司 浏览:977
甘谷县金融机构存款余额 浏览:250
金融机构疫情期间 浏览:970
1月23日日元对人民币汇率 浏览:48
股票澳优奶粉 浏览:567
立信理财为什么收益那么高 浏览:576
浏阳市中小企业融资担保 浏览:639
基金跟理财产品哪个银行好申请 浏览:358
支付第三方佣金 浏览:212
预算股票 浏览:118
利率期货如何获利 浏览:263
黄金什么时候会大涨 浏览:303