导航:首页 > 汇率佣金 > 老唐杠杆数学百度网盘

老唐杠杆数学百度网盘

发布时间:2023-11-29 12:11:09

『壹』 杠杆计算公式

设动力F1、阻力F2、动力臂长度L1、阻力臂长度L2,则

杠杆原理关系式为:F1L1=F2L2

可有以下四种变换式:

F1=F2L2/L1

F2=F1L1/L2

L1=F2L2/F1

L2=F1L1/F2

杠杆五要素:

1、支点:杠杆绕着转动的点,通常用字母O来表示。

2、动力:使杠杆转动的力,通常用F1来表示。

3、阻力:阻碍杠杆转动的力,通常用F2来表示。

4、动力臂:从支点到动力作用线的距离,通常用L1表示。

5、阻力臂:从支点到阻力作用线的距离,通常用L2表示。

(注:动力作用线、阻力作用线、动力臂、阻力臂皆用虚线表示。力臂的下角标随着力的下角标而改变。例:动力为F3,则动力臂为L3;阻力为F5,阻力臂为L5。)

(1)老唐杠杆数学百度网盘扩展阅读:

杠杆的平衡条件 :

动力×动力臂=阻力×阻力臂

公式:

F1×L1=F2×L2变形式:

F1:F2=L2:L1动力臂是阻力臂的几倍,那么动力就是阻力的几分之一。

公式:

F1×L1=F2×L2一根硬棒能成为杠杆,不仅要有力的作用,而且必须能绕某固定点转动,缺少任何一个条件,硬棒就不能成为杠杆,例如酒瓶起子在没有使用时,就不能称为杠杆。

动力和阻力是相对的,不论是动力还是阻力,受力物体都是杠杆,作用于杠杆的物体都是施力物体。

『贰』 谁能帮忙出一套初中物理滑轮和杠杆习题

1、 如图1所示,工人在1分钟内将质量为80千克的重物匀速提高了3米,所用拉力为500牛,求滑轮组的机械效率和工人做功的功率。若仍用此滑轮组将重1600牛的货物匀速提高,所用的拉力至少多大?(绳重及轮轴处摩擦忽略不计,g=10牛/千克)

2、如图2所示,不考虑轮和轴的摩擦及绳重,人拉绳的力F=50牛时,能提起90牛的物体,使物体匀速上升50厘米,求:
(1)滑轮组的机械效率(2)如果仍用此滑轮组,匀速提起190牛顿的物体,人拉绳子的力至少要多大?
3、 利用如图3所示的滑轮组提升重物,设绳重和滑轮轴处摩擦不计。求:(1)若用250牛的拉力,恰好能把400牛的重物,以0.5米/秒的速度匀速提升上来,动滑轮重是多少牛?拉力做功的功率是多少瓦?(2)仍用此滑轮组提起700牛的物体,使它匀速升高5米,拉力F做的有用功是多少焦?总功是多少焦4、如图4所示,利用滑轮组在水平地面上拉重物,物重3000牛,10秒钟内匀速移动距离为5米,绳端拉力400牛,若滑轮组的机械效率为70%,求:
(1)有用功多少焦?
(2)地面对物体的摩擦阻力为多少牛?
(3)拉力的功率是多大?5、在某建筑工地上,用如图6所示滑轮组提升沙石,已知以1米/秒的速度提升1000牛的重物时,所用的拉力为260牛,现要以同样的速度提升600牛的重物升高4米。求:滑轮组此时的机械效率?此时拉力做功的功率是多少?(绳重和轴处摩擦忽略不计)6、某人站在岸上,利用水平放置的滑轮组使湖中的船匀速靠岸。已知滑轮组由两个动滑轮和一个定滑轮组成,滑轮自重不计,船重8.0×104牛,船移动时受到水的阻力是船重的0.01倍,船受到滑轮组的拉力始终沿水平方向,人水平拉绳的力为240牛,船靠岸的速度是0.2米/秒。
求:(1)滑轮组的机械效率;
(2)人拉绳的功率。
7、用如图所示的滑轮组提升重物。
(1)若用200牛的拉力将480牛的跷镌人偬嵘?米,求滑轮组的机械效率。若提升重物过程中克服滑轮轴处摩擦阻力及绳重所做的功为60焦耳,求动滑轮重。
(2)若仍用此滑轮组,将1000牛重的货物匀速提升4米,若提升重物过中程克服滑轮轴处摩擦阻力及绳重所做的功变为200焦耳,求拉力所做的功。

8、某人站在地面上使用由两个定滑轮和两个动滑轮组成的滑轮组,向下用力将地面上的2×103牛的重物匀速得升4米高,不计摩擦,人做功1×104焦。求:
(1)人实际用的拉力多大?
(2)若用这一滑轮组匀速提升另一重物到相同高度,人做功 1、5×104 焦,求此时的机械效率?

9、有一体积为0、1米3,重6860牛的重物不慎落入水中,现用图示滑轮组进行打捞,将其在水中匀速上提2米。求:
(1)重物受到的浮力及滑轮挂钩A受到的拉力各为多少?
(2)若每个滑轮重均为120牛,不计绳重及摩擦,F做功多
10、在码头岸上某人以恒定速度用绳通过定滑轮拉船使船靠岸,不计摩擦力,当绳与水平面成θ角时,则船的速度多大?船速变大了还是变小了165高
11给你两只滑轮,细绳,11塑料袋,说明把一堆小零件分成三等份的方法。(滑轮、细绳、塑料袋重不计,摩擦不计)旧资料

杠杆习题
1.一根硬棒,在力的作用下,如果能够________,这根硬棒就叫杠杆;杠杆的五要素是:_________,_________,_________,_________,_________。

2.杠杆的平衡条件是:_________,它的数学表达式是:__________。

3.用杠杆撬一块质量为1t的石头,如果动力臂为200cm,阻力臂为20cm,那么至少要用________的动力才能把石头撬动。

4.使用杠杆要省力,应当用动力臂______阻力臂的杠杆;如果使用的是费力杠杆,应使动力臂_______阻力臂,使用此类杠杆可以________;天平是________杠杆;不论哪类杠杆都不能既_________又_________。
5.下列事例中,利用了杠杆工作的是( )

A.在湖水中用浆划水

B.用弹簧测力计测量物体的重力

C.用打气筒给自行车打气

D.跳伞运动员利用降落伞从空中落下

6.下列属于省力杠杆的是( )

A.夹酒精棉球的镊子

B.吊车上的起重臂

C.拔铁钉的羊角锤

D.往锅炉里送煤的铁锹

7.两个小孩坐在跷跷板上恰好平衡在水平位置,此时( )

A.两个小孩的重力相等

B.两个小孩到支点的距离一定相等

C.两个小孩的质量一定相等

D.两个小孩的重力和他们各自到支点的距离的乘积相等

8.如图12.4,杠杆处于平衡状态,则力F的力臂是( )
杠杆答案
1.绕着固定的点转动 支点 动力 阻力 动力臂 阻力臂

2.动力×动力臂=阻力×阻力臂 F1×L1=F2×L2

3.1000N

4.大于 小于 省距离 等臂 省力 省距离

5.A 6.C 7.D 8.B

『叁』 初中和高中数理化全部公式

初中的公式: http://..com/question/37172728.html?si=1

初中数学公式: http://..com/question/21842676.html?si=3

高中数学公式下载:
http://www.shuxue.net/Soft_Show.asp?SoftID=3235

高中数学公式大全
http://www.ggjy.net/xspd/xsbk/200408/815.html

高中数学常用公式及常用结论
http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc
考研数学常用微积分公式背诵表
http://www.kaoker.com/soft/00235.htm

初中数学资源网
http://www.1230.org/
初中数学网
http://www.czsx.com.cn/
初中数学乐园
http://www.0618.org/
华师大初中数学网站
http://www.hsdczsx.com/Article_Index.asp
中学数学题库
http://www.tiku.net/
这是初中的代数公式:
http://www.e3g.com/math/expressions/czds/index1.html

初中数学常用公式:
http://e.northeast.cn/system/2006/09/11/050545772.shtml

初中数学公式,这个需要下载:
http://www.hnmaths.com/Soft/czsx/200605/693.html

常用数学公式表:
http://www.wen8.net/html/307.htm

http://forum.heftye.com/viewthread.php?tid=740

另外关于学习方法的:
http://..com/question/18903134.html

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2•sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)

四边形 d,D-对角线长
α-对角线夹角 S=dD/2•sinα
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
=absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
=a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
=mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数 S=r2/2•(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2•[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
=π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4
立方图形
名称 符号 面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面积
h-高 V=Sh
棱锥 S-底面积
h-高 V=Sh/3
棱台 S1和S2-上、下底面积
h-高 V=h[S1+S2+(S1S1)1/2]/3
拟柱体 S1-上底面积
S2-下底面积
S0-中截面积
h-高 V=h(S1+S2+4S0)/6
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底
V=S底h
=πr2h

空心圆柱 R-外圆半径
r-内圆半径
h-高 V=πh(R2-r2)
直圆锥 r-底半径
h-高 V=πr2h/3
圆台 r-上底半径
R-下底半径
h-高 V=πh(R2+Rr+r2)/3
球 r-半径
d-直径 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半径
a-球缺底半径 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半径
h-高 V=πh[3(r12+r22)+h2]/6
圆环体 R-环体半径
D-环体直径
r-环体截面半径
d-环体截面直径 V=2π2Rr2
=π2Dd2/4
桶状体 D-桶腹直径
d-桶底直径
h-桶高 V=πh(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母线是抛物线形)

『肆』 有朋友给我推荐了"老唐数学",老唐是哪里人,教学水平怎样

老唐是四川的,我们学校老师推荐的老唐。跟了老唐学了一年多了,老唐风格比较幽默,课程内容都是干货,很有内涵,非常不错的

『伍』 我数学不太好,想最后冲刺一下,同学给我推荐老唐数学,这个真的可以快速提升数学吗

不知道老唐数学,数学不好,就要多做题,不会的多问,也可以让同学帮忙辅导多做卷子,也可以找个人辅导,就是兼职的老师。希望可以帮到你!

『陆』 杠杆原理在数学里怎么用

杠杆原理亦称“杠埋桥坦杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩,力与力臂的乘积大小必须相等。即:动力乘动力臂等于阻力乘阻力臂。欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。消判

杠杆平衡定义:杠杆平衡是指杠杆处于静止状态下或者匀速转动的状态下。

杠杆原理:在简单的二元系相图中。恒温连接线和液相线固相线有两个焦点。处在连接弯桐线上任一点所代表的体系状态都会发生两相平衡。

阅读全文

与老唐杠杆数学百度网盘相关的资料

热点内容
非金融机构风险管理 浏览:449
俄罗斯玉石交易所 浏览:943
高盛买泰康股份多少钱 浏览:875
2002年信用社贷款利率 浏览:408
2013小微企业融资缺口 浏览:562
下岗职工贷款无息贷款 浏览:345
金通证券ipo 浏览:176
元旦节贵金属休市吗 浏览:199
前海金融港投资管理有限公司 浏览:170
基金理财产品不保本是什么意思 浏览:79
中国网络文学融资 浏览:319
海口招商证券股份有限公司 浏览:581
雅安发展投资有限公司融资 浏览:348
K3汇率流程 浏览:24
融资租赁行业法律法规 浏览:68
金融街投股股份有限公司电话 浏览:107
期货100元不可取 浏览:513
新车贷款保险 浏览:41
期货销售皮包公司 浏览:818
北京金融信息服务外包 浏览:610