① 杠杆分为哪三类分别举两个例子
第一种分类法 第一类杠杆:是动力F和有用阻力W分别在支点的两边。这类杠杆不省力也不费力。例如,剪金属片用的剪刀,刀口很短,它的机械利益远大于1。这是因为金属板很硬,刀口短,刀把长,即动力臂大于阻力臂,可以少用力。属于这种情况的杠杆还有克丝钳等。家庭裁衣剪布用的剪刀,把与刃基本是等长的,即动力臂等于阻力臂,属于不省力也不费力的类型。因为布的厚度较薄,不需太大的力,剪布要直故刀口要长些,为此用力不大,布剪的也直。属于这种类型的还有物理天平。又如理发用的剪刀,刀口很长,即动力臂小于阻力臂,它的机械利益小于1。这是因为剪发本来不需要多大的力,刀口长一些,能够剪得快一些和齐一些。 第二类杠杆:是支点和动力点分别在有用阻力点的两边。这类杠杆的动力臂大于阻力臂,其机械利益总是大于1,所以总是省力的。例如,用铡刀铡草、独轮车等都是这类杠杆。 第三类杠杆:是支点和有用阻力点分别在动力点的两边,这类杠杆的动力臂小于阻力臂,其机械利益总是小于1,所以总是费力的。例如,缝纫机的脚踏板、夹食品的竹夹子都属于这类杠杆。 第二种分类法 第一类杠杆:是省力的杠杆,即动力臂大于阻力臂。例如,羊角锤、木工钳、独轮车、汽水板子、铡刀等等。 第二类杠杆:是费力的杠杆,即动力臂小于阻力臂。如镊子、钓鱼杆、理发用的剪刀。 第三类杠杆:不省力也不费力的杠杆,即平衡杠杆.即动力臂等于阻力臂。其机械利益等于1。如夭平、定滑轮等。
② 什么是杠杆原理
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡专条件”。要使杠属杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。
即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
(2)杠杆原理分三个扩展阅读:
杠杆定理:
1、在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡。
2、在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾。
3、在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾。
4、一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替。
5、相似图形的重心以相似的方式分布。
③ 杠杆原理是什么
初中物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆。
④ 杠杆原理分为哪3类 ______型 ______型 ______型
省力杠杆,费力杠杆,平衡(天平)
⑤ 杠杆原理分为哪3类
省力杠杆,费力杠杆,平衡(天平)
⑥ 杠杆由什么什么什么三部分组成
杠杆由动力臂、阻力臂、支点三部分组成。
从动力到支点的杠杆部分是动力臂,从阻力到支点的杠杆部分是阻力臂。
支点是杠杆中间可以让杠杆绕着这个点转动的点。
(6)杠杆原理分三个扩展阅读:
杠杆是一种简单机械。
在力的作用下能绕着固定点转动的硬棒就是杠杆。
在生活中根据需要,杠杆可以是任意形状。
跷跷板、剪刀、扳子、撬棒、钓鱼竿等,都是杠杆。
滑轮是一种变形的杠杆,定滑轮的实质是等臂杠杆,动滑轮的实质是阻力臂是动力臂一半的省力杠杆。
杠杆五要素:
支点:杠杆绕着转动的点,通常用字母O来表示。
动力:使杠杆转动的力,通常用F1来表示。
阻力:阻碍杠杆转动的力,通常用F2来表示。
动力臂:从支点到动力作用线的距离,通常用L1表示。
阻力臂:从支点到阻力作用线的距离,通常用L2表示。
杠杆的平衡条件 :
动力×动力臂=阻力×阻力臂
1、在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
2、在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
3、在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;
4、一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。
相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布,正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。
⑦ 什么是杠杆杠杆上有哪三点该怎么区分
通俗的说那三点的话,就是 翘石头的时候 你使力的叫动力作用点,石头那端阻碍你力的叫阻力作用点,中间靠它支撑的就是支点,可以定轴转动的
⑧ 杠杆原理分为几种
三种杠杆:
(1)省力杠杆:L1>L2,平衡时F1<F2。特点是省力,但费距离。(如剪铁剪刀,铡刀,起子)
(2)费力杠杆:L1<L2,平衡时F1>F2。特点是费力,但省距离。(如钓鱼杠,理发剪刀等)
(3)等臂杠杆:L1=L2,平衡时F1=F2。特点是既不省力,也不费力。(如:天平)
⑨ 为什么杠杆上三个支撑物的时候就不能用杠杆平衡原理了
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”这句话有着阿基米德严格的科学根据。(阿基米德是古希腊著名的科学家,许多问题在阿基米德的头脑下都解决了)
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅杆顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
⑩ 杠杆原理
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂) * 施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。