『壹』 求杨氏模量已完成的实验报告(有数据有结果)
杨氏模量的测量
【实验目的】
1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】
杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。这圆形夹头可以在支架的下梁的圆孔内自由移动。支架下方有三个可调支脚。这圆形的气泡水准。使用时应调节支脚。由气泡水准判断支架是否处于垂直状态。这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图3
3、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。这是表明标尺通过物镜成像在分划板平面上。由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。标尺是一般的米尺,但中间刻度为0。
【实验原理】
1、胡克定律和杨氏弹性模量
固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S)。
应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。
用公式表达为: (1)
2、光杠杆镜尺法测量微小长度的变化
在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为 。当钢丝下降DL时,平面镜将转动q角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为 处。由于平面镜转动q角,进入望远镜的光线旋转2q角。从图中看出望远镜中标尺刻度的变化 。
因为q角很小,由上图几何关系得:
则: (2)
由(1)(2)得:
【实验内容及步骤】
1、调杨氏模量测定仪底角螺钉,使工作台水平,要使夹头处于无障碍状态。
2、放上光杠杆,T形架的两前足置于平台上的沟槽内,后足置于方框夹头的平面上。微调工作台使T形架的三足尖处于同一水平面上,并使反射镜面铅直。
3、望远镜标尺架距离光杠杆反射平面镜1.2~1.5m。调节望远镜光轴与反射镜中心等高。调节对象为望远镜筒。
4、初步找标尺的像:从望远镜筒外侧观察反射平面镜,看镜中是否有标尺的像。如果没有,则左右移动支架,同时观察平面镜,直到从中找到标尺的像。
5、调节望远镜找标尺的像:先调节望远镜目镜,得到清晰的十字叉丝;再调节调焦手轮,使标尺成像在十字叉丝平面上。
6、调节平面镜垂直于望远镜主光轴。
7、记录望远镜中标尺的初始读数 (不一定要零),再在钢丝下端挂0.320kg砝码,记录望远镜中标尺读数 ,以后依次加0.320kg,并分别记录望远镜中标尺读数,直到7块砝码加完为止,这是增量过程中的读数。然后再每次减少0.320kg砝码,并记下减重时望远镜中标尺的读数。数据记录表格见后面数据记录部分。
8、取下所有砝码,用卷尺测量平面镜与标尺之间的距离R,钢丝长度L,测量光杠杆常数b(把光杠杆在纸上按一下,留下三点的痕迹,连成一个等腰三角形。作其底边上的高,即可测出b)。
9、用螺旋测微器测量钢丝直径6次。可以在钢丝的不同部位和不同的经向测量。因为钢丝直径不均匀,截面积也不是理想的圆。
【实验注意事项】
1、加减砝码时一定要轻拿轻放,切勿压断钢丝。
2、使用千分尺时只能用棘轮旋转。
3、用钢卷尺测量标尺到平面镜的垂直距离时,尺面要放平。
4、杨氏模量仪的主支架已固定,不要调节主支架。
5、测量钢丝长度时,要加上一个修正值 , 是夹头内不能直接测量的一段钢丝长度。
【实验数据处理】
标尺最小分度:1mm 千分尺最小分度:0.01mm 钢卷尺最小分度:1mm 钢直尺最小分度:1mm
表一 外力mg与标尺读数
序号i
0
1
2
3
4
5
6
7
m(kg)
0.000
0.320
0.640
0.960
1.280
1.600
1.920
2.240
加砝码
1.00
2.01
3.08
4.11
5.29
6.57
7.45
8.59
减砝码
0.83
1.94
3.05
4.22
5.31
6.35
7.70
8.59
0.915
1.975
3.065
4.165
5.300
6.460
7.575
8.59
表二 的逐差法处理
序号I
0
1
2
3
(cm)
4.385
4.485
4.510
4.425
4.451
(cm)
-0.066
0.033
0.059
-0.026
的A类不确定度:
的B类不确定度:
合成不确定度:
所以:
表三 钢丝的直径d 千分尺零点误差: -0.001mm
次数
1
2
3
4
5
6
0.195
0.194
0.195
0.193
0.194
0.195
0.1953
0.0007
-0.0003
0.0007
-0.0013
-0.0003
0.0007
的A类不确定度:
的B类不确定度:
合成不确定度:
所以:
另外L=(45.42+4.23)cm、R=131.20cm、b=7.40cm为单次测量,不考虑A类不确定度,它们的不确定度为:
计算杨氏模量
不确定度:
实验结果:
【实验教学指导】
1、望远镜中观察不到竖尺的像
应先从望远筒外侧,沿轴线方向望去,能看到平面镜中竖尺的像。若看不到时,可调节望远镜的位置或方向,或平面反射镜的角度,直到找到竖尺的像为止,然后,再从望远镜中找到竖尺的像。
2、叉丝成像不清楚。
这是望远镜目镜调焦不合适的缘故,可慢慢调节望远镜目镜,使叉丝像变清晰。
3、实验中,加减法时,测提对应的数值重复性不好或规律性不好。
(1) 金属丝夹头未夹紧,金属丝滑动。
(2)杨氏模量仪支柱不垂直,使金属丝端的方框形夹头与平台孔壁接触摩擦太大。
(3)加冯法码时,动作不够平稳,导致光杠杆足尖发生移动。
(4)可能是金属丝直径太细,加砝码时已超出弹性范围。
【实验随即提问】
⑴ 根据Y的不确定度公式,分析哪个量的测量对测量结果影响最大。
答:根据 由实际测量出的量计算可知 对Y的测量结果影响最大,因此测此二量尤应精细。
⑵ 可否用作图法求钢丝的杨氏模量,如何作图。
答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。由公式Y=可得: F= Y△n=KY△n。式中K=可视为常数。以荷重F为纵坐标,与之相应的ni为横坐标作图。由上式可见该图为一直线。从图上求出直线的斜率,即可计算出杨氏模量。
⑶ 怎样提高光杠杆的灵敏度?灵敏度是否越高越好?
答:由Δn= ΔL可知, 为光杠杆的放大倍率。适当改变R和b,可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;因为ΔL=Δn成立的条件是平面镜的转角θ很小(θ≤2.5°),否则tg2θ≠2θ。要使θ≤2.5°,必须使b≥ 4cm,这样tg2θ≈2θ引起的误差在允许范围内;而b尽量大可以减小这种误差。如果通过减小b来增加放大倍数将引起较大误差
⑷ 称为光杠杆的放大倍数,算算你的实验结果的放大倍数。
答:以实验结果计算光杠杆的放大倍数为
执笔人:张昆实
『贰』 杠杆炒股怎么操作
股市操作中,要想买入杠杆股票,只需要到有关的营业厅提交保证金,并且签订杠杆协议就可以买入了。保证金帐户是指在购买股票时,只须花股票总值的25%到30%就行了。
在“买长”时25%,在“卖短”时30%。比如,你把一万元放入保证金账户,就可以买总值四万元的股票。也就是说有四倍的杠杆作用。
当然,那75%的钱是向证券商借来的,利率一般比银行高一些,比信用卡低;而且你的账户还必须维持你所拥有股票市值的25%(买长)到30%(卖短)。
影响保证金的因素很多,这是因为在交易过程中由于各种有价证券的性质不同,面额不等,供给与需求不同,所以,客户在交纳保证金时也要随因素的变动而变动。杠杆股票可分为三种类型:
(1)采用现金保证金交易购买的股票。
(2)采用权益保证金方式购入的股票。
(3)采用法定保证金方式购入的股票。
(2)降杠杆汇报扩展阅读:
央行:审慎对待A股T+0交易严限高杠杆股票融资类结构产品
记者从中国人民银行获悉,近日,央行发布了《中国金融稳定报告(2016)》(以下简称《报告》),对2015年我国金融体系的稳健性状况进行了全面评估,并对2016年市场进行展望。央行表示,今年要坚持稳中求进工作总基调,继续实施积极的财政政策和稳健的货币政策。
而谈及证券期货市场时,央行表示,目前机构持有A股流通市场的比例已超过七成,并且建议未来加大对高频交易的监管,审慎对待A股市场T+0交易,严格限制杠杆比例过高的股票融资类结构化产品。央行指出,2015年,全球经济总体缓慢复苏。
主要经济体增长态势和货币政策进一步分化,国际金融市场和大宗商品价格波动加剧。我国金融业运行总体稳健。银行业资产负债规模保持增长,证券期货业资产规模持续增长,资本市场双向开放不断深化。
机构持有A股流通市值超七成
机构投资者力量有所增强。如《基本养老保险基金投资管理办法》发布,明确养老保险基金可投资于股票、股票基金、混合基金、股票型养老金产品的比例不高于资产净值的30%,养老保险基金获准入市。
截至2015年年末,沪深两市机构投资者持有的已上市流通股占A股流通市值比例达70.18%。针对2016年,央行表示,今年全球经济将继续呈现不均衡复苏。IMF预计2016年和2017年全球经济增速分别为3.4%和3.6%,低于前期预测值。
各经济体能否加强宏观政策协调,妥善应对潜在不利因素。面对更加复杂的经济金融形势,要坚持稳中求进工作总基调,继续实施积极的财政政策和稳健的货币政策,着力加强供给侧结构性改革,推动金融改革开放,深化重点领域改革。
同时,要加强金融监管,完善宏观审慎政策框架。完善金融风险监测、评估、预警和处置体系建设,全面排查风险隐患。强化对跨行业、跨市场风险及风险传染的分析研判。
今年证券市场将继续深化改革
对大多数股民而言,央行如何看待证券市场,如何看待A股,显得非常重要。根据《报告》,央行表示,2016年,证券期货市场将继续深化体制机制改革,建设融资功能完备、基础制度扎实、市场监管有效、投资者合法权益得到充分保护的资本市场。
不过,在谈及健全资本市场交易制度规则时,央行建议要审慎对待A股市场T+0交易。《报告》建议:“目前,我国资本市场制度建设尚不完备,各类机构投资者的风控体系尚显薄弱,中小投资者的非理性行为依然突出。
在相关环境没有根本性改变的情况下,贸然恢复股票T+0交易不仅无助于提高市场效率,还可能助长高频交易,加剧金融投机氛围,诱发系统性金融风险。”
『叁』 有关物理杠杆的专题报告
http://www.white-collar.net/02-lib/01-zg/03-guoxue/%C6%E4%CB%FB%C0%FA%CA%B7%CA%E9%BC%AE/%D7%A8%CC%E2%C0%E0/%CE%C4%BB%AF/%D6%D0%B9%FA%B9%C5%B4%FA%BF%C6%BC%BC%B3%C9%BE%CD/Resource/Book/E/JXCKS/TS011100/0017_ts011100.htm
三物理学
中国古代的力学知识
自然科学史研究所 戴念祖
力学是研究力和机械运动的科学。一个物体在时间、空间中的位置发生变动,就叫机械运动。自然界中一切物体都在作机械运动,即使表面看来静止的桌椅、不动的教室,也时刻在随地球一起转动。力是物质间的一种相互作用,机械运动状态的变化就是这种相互作用引起的。静止的或运动的状态不变化,都意味着其中各种力的相互平衡。力学知识起源于对自然现象的观察和生产劳动。在中国古代有丰富的力学知识。
简单机械
杠杆、滑轮和斜面,物理学上称作简单机械。
杠杆的使用或许可以追溯到原始人时期。当原始人拾起一根棍棒和野兽搏斗,或用它撬动一块巨石,他们实际上就是在使用杠杆。石器时代人们所用的石刃、石斧,都用天然绳索把它们和木柄捆束在一起;或者在石器上凿孔,装上木柄(如图左)。这表明他们在实践中懂得了杠杆的经验法则:延长力臂可以增大力量。
杠杆在中国的典型发展是秤的发明和它的广泛应用。在一根杠杆上安装吊绳作为支点,一端挂上重物,另一端挂上砝码或秤锤,就可以称量物体的重量。古代人称它“权衡”或“衡器”。“权”就是砝码或秤锤,“衡”是指秤杆。迄今为止,考古发掘的最早的秤是在长沙附近左家公山上战国时期楚墓中的天平。它是公元前四到三世纪的制品,是个等臂秤。不等臂秤可能早在春秋时期就已经使用了。古代中国人还发明了有两个支点的秤,俗称铢秤。使用这种秤,变动支点而不需要换秤杆就可以称量比较重的物体。这是中国人在衡器上的重大发明之一,也表明中国人在实践中完全掌握了阿基米德杠杆原理。
《墨经》一书最早记述了秤的杠杆原理。《墨经》是战国时期以鲁国人墨翟(约前468-前376)为首的墨家著作。墨翟和他的弟子们以刻苦耐劳、参加生产、勇敢善战著称。因此,他们的著作中留下了许多自然科学知识。
《墨经》把秤的支点到重物一端的距离称作“本”(今天通常称“重臂”),把支点到权一端的距离称作“标”(今天称“力臂”)。《墨经·经下》中说:第一,当重物和权相等而衡器平衡时,如果加重物在衡器的一端,重物端必定下垂;第二,如果因为加上重物而衡器平衡,那是本短标长的缘故;第三,如果在本短标长的衡器两端加上重量相等的物体,那么标端必下垂。(“衡,加重于其一旁,必垂。权、重相若也相衡,则本短标长;两加焉,重相若,则标必下。”)墨家在这里把杠杆平衡的各种情形都讨论了。他们既考虑了“本”和“标”相等的平衡,也考虑了“本”和“标”不相等的平衡;既注意到杠杆两端的力,也注意到力和作用点之间的距离大小。虽然他们没有给我们留下定量的数字关系,但这些文字记述肯定是墨家亲身实验的结果,它比阿基米德发现杠杆原理要早约二百年。
桔槔也是杠杆的一种。它是古代的取水工具。作为取水工具,一般用它改变力的方向。为其他目的使用时,也可以改变力的大小,只要把桔槔的长臂端当作人施加力的一端就行。春秋战国时期,桔槔已成为农田灌溉的普通工具。
滑轮,古代人称它“滑车”。应用一个定滑轮,可改变力的方向;应用一组适当配合的滑轮,可以省力。至少从战国时期开始,滑轮在作战器械、井中提水等生产劳动中被广泛应用。传说公元前四世纪,巧匠公输般为季康子葬母下棺,创制了转动机关(见《礼记正义》卷十),可能就是指的滑轮。汉代画像砖和陶井模型都有滑轮装置。
滑轮的另一种形式是辘轳。把一根短圆木固定于井旁木架上,圆木上缠绕绳索,索的一端固定在圆木上,另一端悬吊水桶,转动圆木就可提水。只要绳子缠绕得当,绳索两端都可悬吊木桶,一桶提水上升,另一桶往下降落,这就可以使辘轳总是在作功。辘轳大概起源于商末周初(公元前十一世纪)。据宋代曾公亮(998-1078)著《武经总要前集》卷十一《水攻·济水府》,周武王时有人以辘轳架索桥穿越沟堑的记载。唐代刘禹锡(772-842)描写了他亲自所见的一种叫“机汲”的提水机械,它是把辘轳和架空索道联合并用,以便把山下流水一桶桶地提上山顶,既浇田地又省力(《刘梦得文集》卷二十七《机汲记》)。
最早讨论滑轮力学的还是《墨经》。《墨经·经下》把向上提举重物的力称作“挈”(qí),把自由往下降落称作“收”,把整个滑轮机械称作“绳制”。《墨经》中说:以“绳制”举重,“挈”的力和“收”的力方向相反,但同时作用在一个共同点上。提挈重物要用力,“收”不费力,若用“绳制”提举重物,人们就可省力而轻松。(“挈与收反。”“挈,有力也;引,无力也。不必所挈之止于施也,绳制之也。”)又说:在“绳制”一边,绳比较长,物比较重,物体就越来越往下降;在另一边,绳比较短,物比较轻,物体就越来越被提举向上。(“挈,长重者下,短轻者上。”)又说:如果绳子垂直,绳两端的重物相等,“绳制”就平衡不动。(“绳下直,权重相若则正矣。”)如果这时“绳制”不平衡,那么所提举的物体一定是在斜面上,而不是自由悬吊在空中。我们对于墨家的丰富的力学知识就不能不赞佩!
尖劈能以小力发大力。早在原始社会时期,人们所打磨的各种石器,如石斧、石刀、骨针、镞等等,都不自觉地利用了尖劈的原理。墨家在讨论滑轮的功用说到它省力时,就把它比喻作“锥刺”。汉代王充说:“针锥所穿,无不畅达;使针锥末方,穿物无一分之深矣。”(《论衡·状留篇》)墨家和王充等人清楚地知道尖劈原理的经验法则。
在日常生活中常应用的尖劈之一是楔子,木楔或金属楔。人们常用它加固各种器具。唐代李肇讲过这样的故事:
在苏州建造重元寺时,工匠疏忽,一柱未垫而使寺阁略有倾斜。若是请木工再把寺阁扶正,费工费事又费钱。寺主为此十分烦恼。一天,一外地僧人对寺主说:不需费大劳力,请一木匠为我作几十个木楔,可以使寺阁正直。寺主听他的话,一面请木工砍木楔,一面摆酒盛宴外地僧人。饭毕,僧人怀揣楔子,手持斧头,攀梯上阁顶。只见他东一楔西一楔,几根柱子楔完之后,就告别而去。十几天后,寺阁果然正直了。(李肇:《唐国史补》卷中)
小小几个尖劈,作用却这样巨大!
斜面的力学原理和尖劈相同。人们在推车行平地和上坡时发现用力不同。成书于春秋战国之际的《考工记·辀(zhōu)人》中说:“登阤者,倍任者也。”这就是说,推车上坡,要加倍费力气。用双手举重物到一定高度和用斜面把同样的重物升到同一高度,自然后者容易得多。《荀子·宥坐》中说:“三尺之岸而虚车不能登也,百仞之山任负车登焉。何则?陵迟故也。”人们不能把空车举上三尺高的垂直堤岸,却能把满载的车推上百仞高山。这是为什么?因为高山的路面坡度斜缓(“陵迟”)。这正是斜面物理功用的最好总结。
重心和平衡
要使物体平稳地置于桌面上,就要考虑它的重心和平衡的问题。从物理学观点看,通过物体的重心和桌面垂直的线(或面)要维持在这一物体的支持面里;否则,这一物体就很容易倒下。在日常生活中涉及重心和平衡的例子随手可拾。商代的酒器斝(jiǎ)有三足,它的重心总是落在三足点形成的等边三角形里。西汉中山靖王刘胜墓出土的朱雀铜灯,体现了工匠关于重心的巧妙构思。东汉铜奔马,三足腾空,一足落地。但是它的重心刚好落在支撑足上,因此,即使支撑面很小,看来好像容易倾倒,其实是稳定平衡的。在杂技表演中走绳的演员手握长杠或持雨具;单臂撑的演员,他的两腿总要弯过自己的头顶。这些道具或造形,不仅在于美和险的结合,让人惊心动魄,更重要的是演员必需采取的安全措施:保持自己的重心和平衡。
大概在西周时期,聪明的工匠制造了一件盛水的“欹器”。“欹”(qī)的意思是倾斜。它可以随盛水的多少而发生倾斜变化。不装水时,它成倾斜状态;装上一半水时,就中正直立;装满水时,它就自动翻倒,把所盛水倒出。《荀子·宥坐》把它描写作“虚则欹,中则正,满则覆。”所以会出现这种现象,是由于欹器的重心随盛水的多少而发生变化的缘故。有一天,孔子(前551-前479)在鲁庙中见到这种欹器,立即让他的弟子们注水实验。然后,他感慨地说:“吁!恶有满而不覆者哉!”意思是告诫弟子,要谦虚,切戒自满。汉代以后,不断地有人制造各种欹器,充分体现中国人掌握了有关的力学知识。
隋唐时期,或许由于饮酒之风盛行,人们制作了一种劝人喝酒的玩具,经匠心雕刻的木头人,称作“酒胡子”。把它置于瓷盘中,“臲(niè)卼(wù)不定”、“俯仰旋转”、“缓急由人”。(见王定保著:《唐摭言》卷十二《海敍不遇》)也有用纸制作的,“糊纸作醉汉状,虚其中而实其底,虽按捺而旋转不倒也。”(见赵翼(1727-1814)著:《陔余丛考》卷三十三)现在把这些玩具叫不倒翁。另一种劝酒器,虽叫不倒翁,但转动摇摆后最终会倒下。宋代张邦基说:“木刻为人,而锐其下,置之盘中,左右欹侧,僛(qī)僛然如舞之状,久之力尽乃倒。”(张邦基:《墨庄漫录》卷八)这种玩具指向某人或倒向某人,某人当饮酒。
从这些历史文献记载中可以看出,前一种不倒翁的重心略低于木头人下半圆的中心,后一种略高于下半圆的中心,由于它们重心位置不同,造成它们左右摇摆后的不同后果。而古代人把它们制成半圆形下身,并且“虚其中而实其底”,正说明他们有意识地利用重心位置和平衡的关系。
西汉初年(公元前二世纪)成书的《淮南子·说山训》曾就本末倒置而造成不平衡的现象总结说:“下轻上重,其覆必易。”
东汉王充对平衡问题作了极好的论述:“圆物投之于地,东西南北无之不可,策杖叩动,才微辄停。方物集地,一投而止,及其移徙,须人动举。”(《论衡·状留篇》)“策杖”是赶马用的木棍。圆球投落地面,东西南北随遇滚动,只有用棍子制止它,它才会静止一会儿。方形物体投落地面,立即就静止在那儿。如果要它移动,就需要施加外力。这些现象正是力学中随遇平衡和稳定平衡的典型例子。
力
力是物理学中很重要、很基本的概念,它的形成在物理学史上经过了漫长的时间,直到十七、十八世纪,物理学家才对它作出准确的定义。
在甲骨文中,“力”字像一把尖状起土农具耒。用耒翻土,需要体力。这大概是当初造字的本意。
《墨经·经上》最早对力作出有物理意义的定义:“力,刑之所以奋也。”“刑”通“形”,表示一切有生命的物体。“奋”的原意是鸟张开翅膀从田野里飞起,墨家用它描述物质的运动或精神的状态改变,如同今日常用词“奋飞”、“奋发”“振奋”等含义一样。由此可见,墨家定义力是指有形体的状态改变;如果保守某种状态就谈不上奋,也就无需用力了。《墨经》还举了一个例子,从地面上举起重物,就要发“奋”,需要用力。(力,重之谓。下,与,重奋也。”“与”是“举”的省文。)墨家定义力,虽然没有明确把它和加速度联系在一起,但是他们从状态改变中寻找力的原因,实际上包含了加速度概念,它的意义是极其深刻的。
在浩瀚的中国历史典籍中记述了各种各样的力,其中人们对惯性力和重力的认识是值得称道的。
战国初期成书的《考工记·辀人》最早记述了惯性现象。它描述赶马车的经验,说道:“劝登马力,马力既竭,辀犹能一取焉。”“劝登马力”就是赶马车,劝马用力。辀指小车。这句话的意思是,在驾驶马车过程中,即使马不再用力拉车了,车还能继续往前一小段路。
对重力现象最早作出描写的是《墨经·经下》。它指出,凡是重物,上不提挈,下无支撑,旁无力牵引,就必定垂直下落。(“凡重,上弗挈,下弗收,旁弗劫,则下直。”)这就是说,当物体不受到任何人为作用时,它作垂直下落运动。这正是重力对物体作用的结果。
在力学中有一条法则:一个系统的内力没有作用效果。饶有趣味的是,中国人发现和这有关的现象惊人地早。《韩非子·观行篇》中最早提出了力不能自举的思想:“有乌获之劲,而不得人助,不能自举。”乌获,据说是秦武王宠爱的大力士,能举千钧之重。但他却不能把自己举离地面。
东汉王充也说:“古之多力者,身能负荷千钧,手能决角伸钩,使之自举,不能离地。”(《论衡·效力篇》)似乎很可悲,一个身能负千钧重载、手能折断牛角、拉直铁钩的大力士,却不能把自己举离地面。然而,这正是真理所在。再大力气的人,也不能违背上述那条力学法则。因为当自身成为一个系统时,他对自己的作用力属于内力。系统本身的内力对本系统的作用效果等于零。否则,今天就不会有这样的口头禅来嘲讽一个人的能耐是有限的:“你有本事,你也不能揪着自己的头发使自己离地三寸。”
刻舟求剑
船、河岸和水三者之间谁在运动?天和地、月和云谁在运动?这是古代人最关心的运动学问题。这里既涉及参考坐标的重要性,也和相对运动问题有关。
船、河岸和水三者谁在运动的问题,曾经几乎同时困扰了古代东西方的哲人。古希腊亚里士多德(前384-前322)曾经提出,停泊在河中的船实际上处于运动之中,因为不断有新水流和这船接触。“不能同时踏进同一条河”的命题就是由此而来的。古代中国人以自己的思考方式回答这些问题。
晋代天文学家束皙(xī)解释“仰游云以观月,月常动而云不移”的现象说:“乘船以涉水,水去而船不徙矣。”(见《隋书·天文志上》)这个立论方式恰和亚里士多德相反。束皙认为,运动着的船实际上是不运动的,如果过江时一直保持船和河岸垂直指向对岸,船和河床的相对位置就不改变。把参考坐标取在过江线或河床上这时就得出“水去而船不徙”的结论。另一种看法是,让船和水同速漂流,把参考坐标取在整个水流上,船对于水也不发生位置移动。
从物理学看,决定空间位置或物体运动与否必需有一个参考系。否则,就会“东家谓之西家,西家谓之东家,虽皋陶(yáo)为之理,不能定其处。”(《淮南子·齐俗训》)连古圣皋陶都不能断定是非。不清楚参考坐标的人,就像“刻舟求剑”一样胡涂。
刻舟求剑的故事出于战国末期吕不韦(?-前235)主持编纂的《吕氏春秋》。它所包含的物理意义是极其深刻的。这个故事说:有一个楚国人乘船过江,他身上的佩剑不小心掉落江中。他立即在船舱板上作记号,对他的船友说:“这是我的剑掉落的地方。”到了河岸,船停了,他就在画记号的地方下水找剑。“舟已行矣,而剑不行。求剑若此,不亦惑乎?”(《吕氏春秋·慎大览·察今篇》)这样找自己的剑,不是犯胡涂吗?从故事编纂者的口气看,他是知道怎样找到掉落江中的剑的。从物理角度看,找到这把剑有几种办法:第一,记下掉落位置离岸上某标志的方向和距离。这就是说,以河岸作为参考坐标。第二,在船不改变方向和速度的情况下,记下剑掉落时刻、船速和航行时间,据此求出靠岸的船和剑掉落地点的距离。这就是说,以船作为参考坐标。
参考坐标选取适当与否,对解决运动学和动力学中的问题是很重要的。在相对运动中,选取不同的坐标就有不同的运动结论。
前面提到过的束皙曾说:“仰游云以观月,月常动而云不移。”(《隋书·天文志上》)晋代葛洪(283-363)说:“见游云西行,而谓月之东驰。”(《抱朴子内篇·塞难》)南朝梁元帝萧绎(508-554)的诗《早发龙巢》提到在行船舱板上人们的感觉说:“不疑行舫动,唯看远树来。”(见丁福保编:《全汉三国晋南北朝诗》下册《全梁诗》卷下,中华书局1959年版,第957页)敦煌曲子词中有句:“看山恰似走来迎”(见王重民辑《敦煌曲子词集》(修订本),商务印书馆1956年版,第31页)。由于参考坐标的关系,原来不动的物体都成为运动的了。这是并不奇怪的。令人惊奇的是,这些极其典型的相对运动的事例,很早就成为中国文人笔下的力作佳句。
然而,古代人在判断“天”和“地”的相对运动时,并不像上述事例那么简单明了。在古代人看来,“天左旋,地右动。”(《春秋纬·元命苞》)也就是说,以天上星体的东升西落(左旋)来证明地的右旋运动。汉代王充在《论衡·说日篇》中提出了另一种看法:日月星体实际上是附着在天上作右旋运动的,只是因为天的左旋运动比起日月星体的右旋运动来要快,这才把日月星体当成左旋。这种情形就像蚂蚁行走在转动着的磨上,人们见不到蚂蚁右行,而只看见磨左转,因此以为蚂蚁也是左行的。(“当日月出时,当进而东旋,何还始西转?系于天,随天四时转行也。其喻若蚁行于硙上,日月行迟天行疾,天转日月转,故日月实东行,而反西旋也。”)《晋书·天文志》中也说:“天旁转如推磨而左行,日月右行,随地左转,故日月实东行,而天牵之也西没,譬如于蚁行磨石之上,磨左旋而蚁右去,磨疾而蚁迟,故不得不随磨以左回焉。”我们暂且不管“天”是什么,是否在运动,仅从物理学看,王充等人的思想是高明的,他们不仅看到了相对运动,而且还企图以相对速度的概念来确定运动的“真实”情况。
在历史上,许多人参加了这场左右旋的争论。到了宋代,由于理学大师朱熹的名气,他所坚持的“左旋说”又占了上风。这场争论,长达二千多年。直到明代,伟大的科学家朱载堉作出物理判决之后,还争论未了。朱载堉说:“左右二说,孰是耶?曰,此千载不决之疑也。人在舟中,蚁行磨上,缓速二船,良驽二马之喻,各主一理,似则皆似矣。苟非凌空御气,飞到日月之旁,亲睹其实,孰能辨其左右哉?”(《律历融通》卷四《黄钟历议·五纬》,载《乐律全书》)天和地、人和舟、蚁和磨、快慢二船、良驽二马,如果没有第三者作参考坐标,就很难辨明它们各自的运动状态。从物理学看,两个彼此作相对运动的物体A和B,既可以看作A动B不动,也可以看作B动A不动。这两种看法都有效。若要争论它们的运动方向或谁动谁静,那真是“千载不决之疑”。朱载堉的回答完全符合运动相对性的物理意义。然而,朱载堉不明白,即使飞到日月旁,也不能“辨其左右”,而只能回答“似则皆似矣”。
以相对运动的观点来解释天地的运动,在古代的东西方都是一致的。但像朱载堉那样对相对运动作出物理判决的人,在西方只有比朱载堉稍后的伽利略算是最早的。
要解决地静还是地动的问题,关键是要提出令人信服的证据证明地动的不可觉察性。这样,才能牢固地确立地动的观念。完成这任务,在近代物理学史上是伽利略的功劳。然而,古代中国人却从经验事实中总结出这一伟大的发现。
早在汉代成书的《尚书纬·考灵曜》中说道:“地恒动不止,而人不知。譬如人在大舟中,闭牖(yǒu)而坐,舟行而人不觉也。”关闭的船舱,在物理学著作中被看成是最普通、最易被理解的近似的惯性系统。在一个封闭的惯性系统里,无论什么样的力学实验都不能判断这一系统是处在静止状态还是在作匀速直线运动。这个原理又称“伽利略相对性原理”。可是,在伽利略之前大约一千五百年,中国人就提出了这个原理的最古老的说法。这是中国科学史上最伟大的理论成就之一。
浮 力
沉浸在液体中的物体都受到液体的浮举作用。在中国关于浮力原理的最早记述见于《墨经·经下》,大意说:形体大的物体,在水中沉下的部分很浅,这是平衡的缘故。这一物体浸入水中的部分,即使浸入很浅,也是和这一物体平衡的。这种情况就像市上的商品交易,一件甲种商品可以换取五件乙种商品一样。(“荆(形)之大,其沈(沉)浅也,说在具(衡)。”“沈(沉)、荆(形)之具(衡)也,则沈(沉)浅,非荆(形)浅也。若易五之一。”)
《墨经》的这段文字,对浮力原理表达不确切。它没有看到浮体沉浸水中的部分正是这一物体所排开的液体,所排开的液体重量恰好等于浮力;是浮力和浮体平衡,而不是沉浸水中的部分和整个浮体平衡。但是,纵观整段文字,表明墨家已懂得这种关系。他们是阿基米德之前约二百年表达这一原理的。
浮力原理在我国古代得到广泛应用,史书上也留下了许多生动的故事。
三国时期有个早卒的神童叫曹冲(196-208),他是曹操的儿子。他曾经提出“以舟称象”。没有现代的衡器而要称量几吨重的大象是令人为难的。曹冲说:把大象赶到船上,记下船在河中下沉的位置。然后,把大象拉上岸,把石头陆续装入船中,直到装载石头的船下沉到刚才那个记号为止。再分别称出船中石头的重量,石头的总重就是大象的重。(《三国志》卷二十《魏书·邓哀王冲传》)
曹冲称象的方法,正是浮力原理的具体运用。在中国历史上,据记载,有比曹冲更早的类似故事。东周燕昭王(?-前279)有一大猪,他命司衡官用杆秤称它的重量。结果,折断十把杆秤,猪的重量还没有称出来。他又命水官用浮舟量,才知道猪的重量。(见《玉函山房辑佚书》卷七十一《苻子》)
除了用舟称物之外,用舟起重也是中国人的发明。据史籍记载,蒲津大桥是一座浮桥。它用舟做桥墩,舟和舟之间架板成桥。唐玄宗开元十二年(公元724年)在修理这桥时,为加固舟墩,在两岸维系巨缆,特增设铁牛八只作为岸上缆柱。每头铁牛重几万斤。三百多年后,到宋仁宗庆历年间(公元1041年到1048年),因河水暴涨,桥被毁坏,几万斤的铁牛也被冲入河中。这桥毁后二十多年,真定县僧人怀丙提出打捞铁牛、重修蒲津桥的主张。他打捞铁牛的方法是:在水浅时节,把两只大船装满土石,两船间架横梁巨木,巨木中系铁链铁钩,用这铁钩链捆束铁牛。待水涨时节,立即把舟中土石卸入河中。本来就水涨船高,卸去土石后船涨得更高,于是铁牛被拉出水面。(见《宋史·僧怀丙传》)另一记载和这方法稍有不同:在一只船上架桔槔,桔槔短臂端用铁链系牛,长臂端系在另一巨船上。待水涨时,在另一船上装满土石。这样,铁牛被桔槔从河底拉起并稍露水面。(见吴曾著《能改斋漫录》卷三《河中府浮桥》)
可能怀丙打捞铁牛用了这两种方法。怀丙是中世纪伟大的工程力学家。他创造的浮力起重法,曾在十六世纪由意大利数学家卡尔达诺(1501-1576)用来打捞沉船。怀丙打捞铁牛(两种方法)。
液体的表面张力现象
表面张力是发生在液体面上的各部分互相作用的力,它是液体所具有的性质之一。表面薄膜、肥皂泡、球形液滴等都是由于表面张力而形成的。
宋代张世南在《游宦纪闻》卷二中曾记载了一种检验桐油好坏的方法。他说:“验真桐油之法,以细篾一头作圈状,入油蘸。若真者,则如鼓面挽(mán)圈子上。渗有假,则不着圈上矣。”这种用竹蔑圈试桐油好坏的方法,虽然见于宋代的书籍,在这以前人们一定早已在应用了。
我们现在知道,液体能不能附着在这样的竹蔑圈上,和它的表面张力大小有关。而表面张力也和液体里含的杂质有关。液体含杂质,会使液体表面张力大大减小。因此,如果桐油里含的杂质比较多,它的表面张力比较小,就不能在竹篾圈上形成一层鼓面状薄膜。我国古代测试桐油好坏的方法,表明人们在实践中掌握了关于表面张力的科学道理。今天学校里给学生演示表面张力现象的常用仪器,也就是一个圆圈,只是一般不用竹篾而用铁丝做成的罢了。
据载,明熹宗朱由校(1605—1627)玩过肥皂泡。当时人称它“水圈戏”。方以智(1611—1671)说:“浓碱水入秋香末,蘸小篾圈挥之,大小成球飞去。刘若愚言,熹宗能戏,以水抛空中成圈。”(《物理小识》卷十二《水圈戏》)
水的表面张力虽然不算大,但是如果把像绣花针那样的比较轻的物体小心地投放水面(特别是布满气泡的水面),针也能由于水的表面张力而不下沉。我国古代的妇女们就利用这种现象于每年七月七日(农历)进行“丢针”的娱乐活动。明代刘侗(约1594—约1637)、于奕正合写的《帝京景物略》一书卷二《春场》中在记述“丢针”时写到,由于“水膜生面,绣针投之则浮。”这些话表明当时的人们已经提出了表面张力的物理效应的问题。
虹吸管和大气压力
虹吸管,在古代叫“注子”、“偏提”、“渴乌”或“过山龙”。东汉末年出现了灌溉用的渴乌。北魏道士李兰做称漏,也用了渴乌。西南地区的少数民族用一根去节弯曲的长竹管饮酒,也是应用了虹吸的物理现象。宋代曾公亮在《武经总要前集》卷六《寻水泉法》中,有用竹筒制作虹吸管把被峻山阻隔的泉水引下山的记载。
在生产和生活的实践中,我国古代还应用了唧筒。唧筒作为战争中一种守城必备的灭火器,在军事书中经常讲到。宋代苏轼(1037—1101)的《东坡志林》卷四中,曾经记载四川盐井中用唧筒来把盐水吸到地面,它说,以竹为筒,“无底而窍其上,悬熟皮数寸,出入水中,气自呼吸而启闭之,一筒致水数斗。”明代俞贞木的《种树书》中也讲到用唧筒激水来浇灌树苗的方法。
我们知道,虹吸管一类的虹吸现象是由于大气压力的作用而产生的。唧筒也是这样。正是由于广泛使用了虹吸管和卿筒一类器具,有关它们吸水的道理也就引起了古代人的探讨。
南北朝时期成书的《关尹子·九药篇》中说:“瓶存二窍,以水实之,倒泻;闭一则水不下,盖(气)不升则不降。”这里讲的有两个小孔的瓶子能倒出水,闭住一个小孔就倒不出水,这个现象
『肆』 求大学物理实验报告模板( 电子版)
怎样撰写物理实验报告
物理实验除了使学生受到系统的科学实验方法和实验技能的训练外,通过书写实验报告,还要培养学生将来从事科学研究和工程技术开发的论文书写基础。因此,实验报告是实验课学习的重要组成部分,希望同学们能认真对待。
正规的实验报告,应包含以下六个方面的内容:(1)实验目的;(2)实验原理;(3)实验仪器设备;(4)实验内容(简单步骤)及原始数据;(5)数据处理及结论;(6)结果的分析讨论。
现就物理实验报告的具体写作要点作一些介绍,供同学们参考。
一、实验目的
不同的实验有不同的训练目的,通常如讲义所述。但在具体实验过程中,有些内容未曾进行,或改变了实验内容。因此,不能完全照书本上抄,应按课堂要求并结合自己的体会来写。
如:实验4-2 金属杨氏弹性模量的测量
实验目的
1.掌握尺读望远镜的调节方法,能分析视差产生的原因并消除视差;
2.掌握用光杠杆测量长度微小变化量的原理,正确选择长度测量工具;
3.学会不同测量次数时的不确定度估算方法,分析各直接测量对实验结果影响大小;
4.练习用逐差法和作图法处理数据。
二、实验原理
实验原理是科学实验的基本依据。实验设计是否合理,实验所依据的测量公式是否严密可靠,实验采用什么规格的仪器,要求精度如何?应在原理中交代清楚。
1.必须有简明扼要的语言文字叙述。通常教材可能过于详细,目的在便于学生阅读和理解。书写报告时不能完全照书本上抄,应该用自己的语言进行归纳阐述。文字务必清晰、通顺。
2.所用的公式及其来源,简要的推导过程。
3.为阐述原理而必要的原理图或实验装置示意图。如图不止一张,应依次编号,安插在相应的文字附近。
如:实验3-3 滑线变阻器的分压与限流特性
实验原理
滑线变阻器在电路中的连接不同,可构成分压器和限流器。
1.分压特性研究
实验电路如图1。滑动头将滑线电阻 分成 和 两部分, 为负载电阻。电路总电阻为
图1 分压电路
图2 分压特性曲线
故总电流为
为电源的端电压,不是电源的电动势 。负载电阻 上的压降为
令 、 , 是负载电阻 相对于滑线电阻 阻值大小的参数; 是滑线电阻 的滑动头相对于低电位端的位置参数。则上式可改写为
在给定负载 和滑线电阻 的情况下, 为某一定值,则分压比 与滑线电阻 滑动头位置参数 有关,它们的函数关系曲线如图2。
本实验是通过实际测量来检验 的函数关系曲线是否与理论曲线相吻合,并探讨分压电路的有关规律。
2.限流特性研究
实验电路如图3。此时流过负载 的电流为
令 ,则
图4 限流特性曲线
、 定义同前。对于不同的参数 ,电路的限流比 与滑线电阻 滑动头位置参数 有关,它们的函数关系曲线如图4。
图3 限流电路
本实验是通过具体测量来了解它们的关系曲线及限流电路的基本特征。
三、实验仪器设备
在科学实验中,仪器设备是根据实验原理的要求来配置的,书写时应记录:仪器的名称、型号、规格和数量(根据实验时实际情况如实记录,没有用到的不写,更不能照抄教材);在科学实验中往往还要记录仪器的生产厂家、出厂日期和出厂编号,以便在核查实验结果时提供可靠依据;电磁学实验中普通连接导线不必记录,或写上导线若干即可。但特殊的连接电缆必须注明。
如:实验5-7 用电位差计校准毫安表
实验仪器设备
HD1718-B型直流稳压电源(0-30V/2A),UJ36a型直流电位差计(0.1级、量程230mV),BX7D-1/2型滑线变阻器(550Ω、0.6A),C65型毫安表(1.5级、量程2-10-50-100mA),ZX93直流电阻器,ZX21旋转式电阻箱,UT51数字万用表,导线若干。
四、实验内容及原始数据
概括性地写出实验的主要内容或步骤,特别是关键性的步骤和注意事项。根据测量所得如实记录原始数据,多次测量或数据较多时一定要对数据进行列表,特别注意有效数字的正确,指出各物理量的单位,必要时要注明实验或测量条件。
如:实验3-1 固体密度测量
实验内容及原始数据
1.用游标卡尺测量铜环内、外径,用螺旋测微计测量厚度。
螺旋测微计零位读数 0.003 (mm)
n 1 2 3 4 5 6 7
外径D(mm) 29.96 29.94 29.98 29.94 29.96 29.92 29.96
内径d(mm) 10.02 10.04 10.00 10.02 10.06 10.04 10.08
厚
h 测量读数(mm) 9.647 9.649 9.648 9.644 9.646 9.646 9.645
测量值(mm) 9.644 9.646 9.645 9.641 9.643 9.643 9.642
2.用矿山天平测量铜环质量
53.97 g
指针折回点读数 S1 S2 S3 S4 S5
零 点α 17.9 6.5 17.5 7.0 17.2
停 点β 15.0 6.0 14.8 6.1 14.4
停 点γ 12.1 5.8 11.9 6.1 11.6
五、数据处理及结论
1.对于需要进行数值计算而得出实验结果的,测量所得的原始数据必须如实代入计算公式,不能在公式后立即写出结果;
2.对结果需进行不确定度分析(个别不确定度估算较为困难的实验除外);
3.写出实验结果的表达式(测量值、不确定度、单位及置信度,置信度为0.95时可不必说明),实验结果的有效数字必须正确;
4.若所测量的物理量有标准值或标称值,则应与实验结果比较,求相对误差。
5.需要作图时,需附在报告中。
如:实验3-1 固体密度测量
数据处理及结论
,
经查表, 时铜的密度为 ,实验结果的相对误差为
六、结果的分析讨论
一篇好的实验报告,除了有准确的测量记录和正确的数据处理、结论外,还应该对结果作出合理的分析讨论,从中找到被研究事物的运动规律,并且判断自己的实验或研究工作是否可信或有所发现。
一份只有数据记录和结果计算的报告,其实只完成了测试操作人员的测试记录工作。至于数据结果的好坏、实验过程还存在哪些问题、还要在哪些方面进一步研究和完善?等等,都需要我们去思考、分析和判断,从而提高理论联系实际、综合能力和创新能力。
1.首先应对实验结果作出合理判断。
如果仪器运行正常,步骤正确、操作无误,那就应该相信自己的测量结果是正确或基本正确的。
对某物理量经过多次测量所得结果差异不大时,也可判断自己的测量结果正确。
如果被测物理量有标准值(理论值、标称值、公认值或前人已有的测量结果),应与之比较,求出差异。差异较大时应分析误差的原因:
(1) 仪器是否正常?是否经过校准?
(2) 实验原理是否完善?近视程度如何?
(3) 实验环境是否合乎要求?
(4) 实验操作是否得当?
(5) 数据处理方法是否准确无误?
2.分析实验中出现的奇异现象。
如果出现偏离较大甚至很大的数据点或数据群,则应认真分析偏离原因,考虑是否将其剔除还是找出新规律。
无规则偏离时,主要考虑实验环境的突变、仪器接触不良、操作者失误等。
规则偏离时,主要考虑环境条件(温度、湿度、电源等)的变异、样品的差异(纯度、缺陷、几何尺寸不均等)。
如果能找出新的数据规律,则应考虑是否应该否定前人的结论。只有这样,才能在科学研究中有所创新。但要切实做到“肯定有据、否定有理”。
3.对讲义中提出的思考题作出回答
问题可能有好几个,但不一定要面面具到一一作答。宁可选择一两个自己有深刻体会的问题,用自己已掌握的理论知识和实践经验说深透些。
如:实验3-3 滑线变阻器的分压与限流特性
实验结果的分析和讨论
1.本实验所得曲线与原理曲线相似,故可认为实验是基本成功的。
2.当 时,分压和限流特性曲线都接近线性,但不是一条直线。若要求其呈一条直线,唯有 ,即负载开路。
值越小,曲线弯曲得越厉害,当 时,曲线几乎呈直角弯曲。
3.实验结果表明,测量值比理论计算值高,尤其在小负载( )情况下更为突出。这可能由于:
(1) 负载电阻 精度不高,误差达 以上;
(2) 滑线电阻的滑动头位置不准确,触头不是精密点接触,可能同时跨越几圈电阻线;
(3) 电表的内阻带来的影响;
(4) 电源的稳定度不高。等等。
4. 时,曲线 和 近乎线性,这在电子线路中有广泛应用。例如,前者作为音频放大器的音量调节,音量随电位器中心触头的位置在近乎线性地增减;后者多在电路中作偏流电阻使用;
5.除非特殊应用,一般不采用 的电路设计。