1. 大学拉伸法光杠杆测量钢丝的杨氏弹性模量
本来实验误差就比较大,而且这样的东西应该数量级差不多就行。还有报告中多分析一下误差来源就好。。。你是科大的么?
2. 杨氏弹性模量实验中,为什么光杠杆系统可以测量出长度的微小变化其放大倍数与哪些量有关
光杠杆法是利用当钢丝伸长微小的距离,反射镜会偏转一个微小的角度,使得镜子里标尺的刻度像会变化一定刻度,通过刻度变化可以计算出钢丝长度变化。放大倍数与镜面到尺面距离,镜子支架长度有关。
光杠杆放大法是一种利用光学放大方法测量微小位移的装置。由于在拉伸法测量杨氏模量的实验中,金属丝的伸长量很难测量,所以必须使用光杠杆放大后,才能够测量出来。
(2)光杠杆测弹性模量视频扩展阅读:
注意事项:
在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中成像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为 。当钢丝下降DL时,平面镜将转动q角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。
3. 用光杠杆法测钢的杨氏模量时钢丝长度怎么测
光杠杆两个前足尖放在弹性模量测定仪的固定平台上,而后足尖放在待测金属丝的测量端面上。金属丝受力产生微小伸长时,光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。
(3)光杠杆测弹性模量视频扩展阅读
光杠杆法,在长度或位置差别甚小的测量中,这是一个简单有效的方法。它是一块安装在三个支点上的平面镜,F1和F2为前面的支点,R是后面的支点。
镜的偏转面所在的平面平行于F1、F2的连线,R安装在待测量的位置变化的物体上,F1和F2固定于基座,使平面镜能绕F1F2轴转动,L是望远镜,S是标尺(它上面的字是反的),当光线经M反射后,标尺S上的刻度可通过望远镜观测。
根据不同的受力情况,分别有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。
4. 杨氏模量的光钢杆法测量杨氏模量的实验
基本公式:,式中L为金属丝原长
光杠杆放大原理
光杠杆两个前足尖放在弹性模量测定仪的固定平台上,而后足尖放在待测金属丝的测量端面上。金属丝受力产生微小伸长时,光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。
如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然有一个角度差,用θ来表示这个角度差。从下图我们可以看出:
△L=b·tanθ=bθ,式中b为光杠杆前后足距离,称为光杠杆常数。
设放大后的钢丝伸长量为C,由图中几何关系有:
θ=C/4H
故:△L=bC/4H
代入计算式,即可得下式:
式中D为钢丝直径,变量D(使用螺旋测微器测量)、F(通过所加砝码质量计算)、H、C(直接读数)、b(使用游标卡尺测量)、L就是所要测量的目标物理量。根据该公式便可计算杨氏模量。
5. 杨氏弹性模量的测定步骤
杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大小的因素之一,是表征材料机械特性的物理量之一。
拉伸法是一种最简便的测量杨氏模量的方法。测量步骤如下:
1.调整好杨氏模量测量仪,将光杠杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光杠杆平面镜倾斜。
2.调整望远镜。调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。
3.在钢丝下加两个砝码,以使钢丝拉直。记下此时望远镜中观察到的直尺刻度值,此即为n0
值。逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记数据,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,
逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。
4. 用米尺测量平面镜到直尺的距离L;将光杠杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。
5.最后带入下面的公式计算杨氏模量。
6. 弹性模量测定时没有光杠杆怎么办
因为你的眼睛和你的眼睛的像所在的直线与你的目光光线正好重合。
7. 杨氏弹性模量的测定实验中光杠杆的放大率是多少
1、放大率:2D/b。即为放大倍率D是标尺至平面镜距离b是光杠杆T形架长度。
2、杨氏模量(Young's molus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。