㈠ 利用杠杆原理的工具,写出制作过程!要短!要快!
因为力矩不平衡。
力矩是使物体发生转动的原因,只要物体受到的力矩不是平衡的,那么这个物体就一定会发生转动。(就像 力是改变物体运动状态的原因,只要物体的受力不平衡,物体的运动状态一定会发生改变。)
在杠杆中,由于长的部分力臂比较长,故在相同质量的物体下,杆长的这一部分就可以产生更大的力矩,而杆短的一端所产生的力矩就会比较小。这样,在长的一边放轻的物体所产生的力矩就可以大于短的一边,如此,杆受到的力矩就不平衡了,于是发生转动,翘起短的部分的物体。
㈡ 杠杆原理及公式
杠杆原理为了平衡杠杆,作用在杠杆上的两个力矩(力与力臂的乘积)的大小必须相等。
公式:动力×动力臂=阻力×阻力臂,用代数式表示为F₁·L₁=F₂·L₂。式中,F₁表示动力,L₁表示动力臂,F₂表示阻力,L₂表示阻力臂。
使用杠杆时,为了省力,应该使用动力臂比阻力臂长的杠杆;如果想节省距离,应该使用动力臂比阻力臂短的杠杆。所以杠杆可以节省精力和距离。然而,如果想省力,必须移动更多的距离;如果想移动更少的距离,必须花费更多的努力。要想又省力而又少移动距离,是不可能实现的。
(2)杠杆原理投篮器制作过程扩展阅读:
杠杆原理的分类:
1、省力杠杆
L1>L2,F1<F2,省力、费距离。
如拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。
2、费力杠杆
L1<L2,F1>F2,费力、省距离。
如钓鱼竿、镊子,筷子,船桨裁缝用的剪刀 理发师用的剪刀等。
3、等臂杠杆
L1=L2,F1=F2,既不省力也不费力,又不多移动距离,
如天平、定滑轮等。
㈢ 夹壳器用到了杠杆的原理吗
肯定是用到了杠杆原理!
它的作用就是利用杠杆原理,设计一种东西,让它的施力点把力放大加到壳子的受力点,以便省力、快捷、安全!
㈣ 请问投篮动作是什么杠杆原理 能说出支点、动力臂、阻力臂吗
㈤ 杠杆的原理的原理是什么
要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。专即:动力×动力臂=阻力属×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。因此要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。
当杠杆的动力点到支点的距离大于阻力点到支点的距离时是省力杠杆,反之则是费力杠杆。杠杆可分为省力杠杆、费力杠杆和等臂杠杆。
杠杆原理的应用:
1、省力杠杆:L1>L2, F1<f2 ,省力、费距离。如拔钉子用的羊角锤、铡刀,瓶盖扳子等。
2、费力杠杆: L1<L2, F1>F2,费力、省距离。如钓鱼竿、镊子等。
3、等臂杠杆: L1=L2, F1=F2,既不省力也不费力,又不多移动距离。如天平、定滑轮等。
㈥ 利用杠杆原理的工具写出制作过程
杆秤:
杆秤是利用杠杆平衡条件制成的。如图所示,秤杆上提绳的D点为支点,由于支点不在秤杆(包括秤钩)的重心B点上,在不称物体时,手提绳,秤杆不能平衡于水平位置,此时必须把秤砣挂在适当的位置D点上,才能使秤杆平衡。D点就是杆秤的零刻度线,通常叫定盘星。(如图所示)
秤杆上从定盘星开始刻度是均匀的,用等分法可以确定杆秤的刻度。
根据杠杆的平衡条件,改变支点的位置(即在秤钩处加上一个提绳),这样又可以用上面的方法刻出新的刻度来。一般的杆秤都备有两个提纽,两套刻度.大大增加了秤的称量范围。
㈦ 杠杆原理是怎样做出的
原理简介
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”这句话有着阿基米德严格的科学根据。(阿基米德是古希腊著名的科学家,许多问题在阿基米德的头脑下都解决了)
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅杆顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×l1=F2×l2这样就是一个杠杆。动力臂延伸杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力距);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
希望能帮到你,麻烦给“好评”
㈧ 阿基米德发现杠杆原理的过程
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两回个力(动力答点、支点和阻力点)的大小跟它们的力臂成反比。杠杆原理的表达为:
动力×动力臂=阻力×阻力臂
公元前3世纪,古希腊物理学家、数学家阿基米德(Archimedes,约公元前287-前212)在他的著作《板的平衡》中,第一个提出了关于作用在支点两边等距的等重物体是处于平衡状态的公理。之后,他又致力于建立一条原理,即“在杠杆上的不同重物,仅当它们的重量与它们的悬挂点到支点的长度成反比时,才能处于平衡状态”,这就是我们常说的杠杆原理。
阿基米德有一句名言:“给我一个可靠的支点,我就能撬动地球。”杠杆原理被应用到方方面面的机械中,是简单机械的基本原理。常见的滑轮、杠杆、轮轴都是利用的都是这一原理。阿基米德所创立的杠杆原理和力学理论,也奠定了他在物理学发展过程中的先行者的角色。作为一名自然哲学家,阿基米德是力学这门学科的真正创始人。