⑴ 怎样从数学的角度解释杠杆原理最好有图示
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
中文名
杠杆原理
外文名
lever principle
别 称
杠杆平衡条件
表达式
F1· L1=F2·L2.
提出者
阿基米德
提出时间
公元前245年左右
应用学科
物理科学
适用领域范围
杠杆力学
适用领域范围
建筑,物理,机械
原理提出
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”,这句话便是说杠杆原理。
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
阿基米德
这些公理是:
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替
(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的船只顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在中国历史上也早有关于杠杆的记载。战国时代的墨子曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的。
概念分析
编辑
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2这样就是一个杠杆。
动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
⑵ 物理杠杆原理图怎么画,求
这更感人的话你就根据书上的杠杆原理然后根据想象就可以画出
⑶ 杠杆原理
1.怎么理解 为什么 力臂的长短可以影响平衡?
(1)这是人们在生活中发现的,或者说是在实验中总结出的规律。
(2)力的作用效果与作用点、作用方向有关,也就是与力臂有关。
(3)从转动力学角度看,力矩是导致物体转动的原因,力矩的大小等于力乘以力臂。
2.如果是重心 那么没有力臂的影响又怎么来重心呢?
如果支点就在杠杆的重心,而且杠杆也不受其他的力作用,此时,重力对杠杆的平衡不起任何作用。理论上,杠杆可以在任何角度平衡。
⑷ 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。内要使杠容杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
⑸ 杠杆原理及公式
将杠杆原理看作以支点为中心的旋转运动,就比较容易理解了。动力点或专阻力点的移动距离属是由以支点为中心的圆的半径决定的。半径越长,这个点移动的距离就越长,因为这个点就得沿半径更长的圆移动了。
距离变化的同时,也伴随着力的增减。这是因为单纯的杠杆原理是通过以下公式成立的:作用于动力点的力×动力点移动的距离=作用于阻力点的力×阻力点移动的距离。(力×力作用的距离)在物理学中叫做“功”,即人做的功和物体被做的功是相等的(能量守恒定律)。
(5)杠杆力学原理图扩展阅读
在杠杆原理中,我们把杠杆固定的旋转点称为“支点”。要想举起重物,就要把支点置于尽量靠近物体的地方。
假设人施加力的点(动力点)与支点之间的距离达到支点与使物体移动的点(阻力点)之间距离的5倍。那么,要想撬起地球仪,只需要用地球仪1/5重量的力按压木板即可。
剪刀、起子、镊子、筷子、钳子、杆秤......这些工具都用到了“杠杆原理”。利用杠杆原理,我们可以用很小的力量撬起很重的物体,也可以把短距离移动放大为长距离移动。正因如此,杠杆原理在生活中的应用十分广泛。
⑹ 杠杆原理示意图
这是我确定的方法,不知道对你有没有帮助就是在你的脑海里面是这个杠杆转动,多转动几次,不动的就是支点
⑺ 画一个杠杆的受力分析图
⑻ 杠杆原理作图方法
阻力臂 ,先找到支点,(可以绕着转动的地方),然后找到阻碍你的地方.比如:扫地 扫把与内地的接触点就是阻碍容你扫地的地方阻力F2,支点就是你那个一直握住扫把不动的点。把支点与阻力F2连起来就是阻力臂。
.动力臂也是先找到支点 ,然后找到动力F1(你用力的地方) 比如: 扫地 支点和上面一样的. 动力F1就是你另一个手到这个不动的手的距离。把支点与动力F1连起来就是动力臂、
⑼ 相图 杠杆原理
所谓杠杆法则,是指:某一成分的二元合金在某个温度时,如果处于二元相图的两相区,则两相之间的重量比可用“杠杆法则”求得。在此温度做水平线与两相区的相界线相交,两交点内水平线被合金的成分垂线分成二段,两相的重量比与这两线段的长度成反比。
1杠杆法则的推导及使用原则
设合金重量为W,平衡存在的两相的重量分别为W1、W2,则必然存在:
W=W1+W2 (1)
其次,设合金的成分为x,两相的成分分别为:x1、x2;且x1<x<x2。
则必然:Wx=W1x1+W2x2 (2)
根据公式⑴,可以得到:1=W1W+W2W (3)
根据公式(2),可以得到:x=W1Wx1+W2Wx2 (4)
将(3)式变换成下面两式:1-W2W=W1W、1-W1W=W2W;再带入(4),分别可以得到:
W1W=x2-xx2-x1、W2W=x-x1x2-x1;
则:W1W2=x2-xx-x1
上式所反映的关系,确实很像力学中的杠杆平衡,所以被叫做杠杆法则,或者截线法则以及杠杆定律。必须指出的是,在合金相图中,杠杆法则只能在两相平衡的状态下使用,这是基本使用原则。