㈠ 杠杆原理是什么又是谁发明的
古希腊科学家阿基米德在《论平面图形的平衡》一书中提出了杠杆原理。
杠杆原理(物理学力学定理)杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
(1)杠杆原理是谁扩展阅读:
杠杆可分为省力杠杆、费力杠杆和等臂杠杆,没有任何一种杠杆既省距离又省力
1、省力杠杆:L1>L2,F1<F2,省力、费距离。如拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。
2、费力杠杆:L1<L2,F1>F2,费力、省距离。如钓鱼竿、镊子,筷子,船桨裁缝用的剪刀 理发师用的剪刀等。
3、等臂杠杆:L1=L2,F1=F2,既不省力也不费力,又不多移动距离,如天平、定滑轮等。
㈡ 是谁发现了杠杆原理他还发现了什么
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;(4)一个重物的作置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
阿基米德(公元前287年—公元前212年),古希腊哲学家、数学家、物理学家。出生于西西里岛的叙拉古。阿基米德到过亚历山大里亚,据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。阿基米德流传于世的数学著作有10余种,多为希腊文手稿。
力学方面: 阿基米德在力学方面的成绩最为突出。 1、在总结了关于埃及人用杠杆来抬起重物的经验的基础上,阿基米德系统地研究了物体的重心和杠杆原理。提出了精确地确定物体重心的方法,指出在物体的中心处支起来,就能使物体保持平衡;同时,他在研究机械的过程中,发现并系统证明了阿基米德原理(即杠杆定律),为静力学奠定了基础。此外,阿基米德利用这一原理设计制造了许多机械。 2、他在研究浮体的过程中发现了浮力定律,也就是有名的阿基米德定律其公式为:F浮=G排液=ρ液gV排液。 几何学方面: 阿基米德的数学成就在于他既继承和发扬了古希腊研究抽象数学的科学方法,又使数学的研究和实际应用联系起来。 1、阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,类似于现代微积分中所说的逐步近似求极限的方法。 2、他是科学的研究圆周率的第一人。他提出用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法求圆周率。他求出了圆周率大小范围为:223/71<π<22/7。 3、面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。 4、提出了著名的阿基米德公理,用现代数学语言表述,阿基米德原理指对于任何自然数(不包括0)a、b,如果ab. 天文学方面: 1、他发明了用水利推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象; 2、他认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。 重视实践: 阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。他非常重视试验,亲自动手制作各种仪器和机械。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、扬水机、利用太阳光将敌人的船焚烧以及军事上用的抛石机等。被称作“阿基米德螺旋”的扬水机至今仍在埃及等地使用。
㈢ 什么是杠杆原理
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡专条件”。要使杠属杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。
即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
(3)杠杆原理是谁扩展阅读:
杠杆定理:
1、在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡。
2、在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾。
3、在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾。
4、一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替。
5、相似图形的重心以相似的方式分布。
㈣ 杠杆原理是谁发现的
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
㈤ 杠杆原理是谁发明的
在没有文字记载的古代,人们就会利用杠杆原理劳动、搞大型建筑、运输大型石材等等。
㈥ 杠杆原理到底是谁提出来的
这个是阿基米德提出来的。
㈦ 杠杆原理是谁发现的
1.《墨子》一书记述了类似秤的杠杆原理。这是最早的杠杆原理理论。
2.古希腊科学家阿基米德有这样一句流传千古的名言:“给我一个支点,我就能撬起整个地球!”这句话有着严格的科学根据。
主要成就:几何体的表面积和体积的计算方法代表作品:《论球和圆柱》、《论螺线》、《沙的计算》、《论图形的平衡》。杠杆原理的根本是重力势能的守恒!
㈧ 杠杆原理是谁发现的
公元前287年,阿基米德出生于地中海中部的西西里岛。在阿基米德11岁的时候,菲迪阿斯将他送往埃及深造。阿基米德长到7岁的时候,父亲为他请了最好的教师,教他数学、天文学、哲学和文学。群众中流传的伊索寓言、荷马史诗,是阿基米德最爱听的故事。这些故事给了他智慧。
阿基米德来到亚历山大的时候,欧几里得已经去世,他的学生埃拉托色尼便成了阿基米德的老师。师生之间感情甚洽,他们一起讨论数学、天文学、力学方面的问题,一起看戏剧,听音乐。每当风和日丽之时,他们还一起去散步或游览尼罗河。就在这种融洽的关系中,阿基米德的知识和智慧一天天丰富起来。
阿基米德从11岁去亚历山大学习和工作,直到47岁才回到叙拉古,时间是公元前240年。在这时正是他的创造力最旺盛的时期,他被委任为亥厄洛国王的顾问,继续从事数学和力学方面的研究。
在阿基米德记有他静力学研究成果的《论平面的平衡》一书中,他从一系列公理出发,推证出物体A、B的最重mA、mB,与它们分别到支点O的距离OA和OB有如下关系:
mA/mB=OB/OA
这就是著名的杠杆原理。阿基米德非常欣赏自己的这一发现。据说,他曾以这样的豪语评价杠杆的作用:“给我一个稳固的支点,我就能把地球挪动!”
阿基米德在流体静力学研究上取得的一个最伟大的成就是发现了浮力定律。
他著成了《浮体论》这部流体力学的经典著作。在这本书中,他提出:“任何浸在水中的物体,它在水中失去的重量等于它所排开的水的重量。”换句话说就是:“一个密度小于水的物体,用力使它下沉,就要克服一种向上的浮力。浮力的大小,等于它所排开的水的重量。”这就是浮力定律,又称阿基米德定律。这一定律,不仅仅对于水,对一切液体、气体都适用。
阿基米德设计和制造成功了一种省力的提水机械:让一个斜面绕在一根轴上,构成一个类似现在的螺杆式的东西。螺杆置于一个两端开口的圆筒内,一端装有可使螺杆转动的摇柄。这时,只要把圆筒的下端置于水中,再用力轻轻摇动螺杆,水就会沿着螺纹的斜面爬升,直到从圆筒的上端流出来。从此,这种机械被称之为“阿基米德螺旋提水器”。为了保卫祖国,他把自己的晚年全部献给了抵御敌军的器械的研究,先后研制成功投石机、回转起重机等武器,一次又一次地打败了罗马军队的进攻。
由于阿基米德所发明的种种武器的威力,终使罗马军队攻占叙拉古的意图长期未能得逞。罗马的海军统帅马塞拉斯在吃了多次败仗以后,沮丧地说,阿基米德这个“几何学妖怪”使我们出尽了洋相。
阿基米德用他的智慧照亮了蛮荒时代的天空,使文明的曙光照耀着欧洲大地。他像一个纯真的孩童,沉醉在科学的翱翔中,浑然不受名利的影响,甚至连死亡的阴影也不能遮挡这种为科学而献身的巨大喜悦和幸福。