㈠ 如何用“杠杆定律”求出球的体积
可不可以把那个杠杆弄平衡,然后把球放一边,另一些物体放另一边,他们平衡了,那么球的体积就等那个物理的体积?那个物体是规则的.......这个行不行啊?我杠杆的也不会..........
㈡ 阿基米德用杠杆原理怎么测旋转体,球等的体积的
用杠杆原理怎么测旋转体
用杠杆原理怎么测旋转体
㈢ 如何称球体积
把容器装满水,然后把球放到里面…一定要全部倾入水中~这时水会溢出来…溢出来的水的体积就是那只球的体积
㈣ 杠杆两个球体积oa小于ob
这到题我做过.杠杆会往质量小的一边斜.因为密度相同,质量越大,体积越大,排开的水越多,受到的浮力就比较大,所以……
㈤ 比较阿基米德与祖冲之对球体体积的证明
古希腊著名数学家阿基米德(公元前287—前212)在《处理力学问题的方法》利用“平衡法”求解体积,即“在数学上就是将需要求积的量(面积、体积等)分成许多微小单元(如微小线段、薄片等),再用另一组微小单元来进行比较,而后一组微小单元的总和比较容易计算。只不过这两组微小单元的比较是借助于力学上的杠杆平衡原理来实现的。”[4] 因此,可以说阿基米德的平衡法体现了近代积分法的基本思想,阿基米德本人用它解决了一系列几何图形的面积、体积计算问题。比如阿基米德用“平衡法”证明了球体积公式,即球的体积等于底面为球的大圆、高为球半径的圆锥的4倍。方法比较接近于现代的积分学
祖冲之之子祖暅,利用祖氏定理“幂势既同,则积不容异”和“出入相补原理”方法,在牟合方盖的基础上,解决了刘徽绞尽脑汁未果的球体积问题,得出了球体积的正确公式。从中可以看出在求解有关球的性质的时候,我国并没有涉及到微积分方法。求解球积问题的基本方法是构造方法,利用数学建模的方式求得与原来的问题等价,借助于外来的力量解决几何问题。并且,刘祖二人在具体求解时,首先计算出了球的体积,而球的表面积成为历史遗留问题,直到清代才得以完全解决。
㈥ 球体杠杆原理
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。来源于《论平面图形的平衡》。
中文名
杠杆原理
外文名
lever principle
别称
杠杆平衡条件
表达式
F1·L1=F2·L2
提出者
墨子、阿基米德
快速
导航
概念分析
杠杆平衡
杠杆分类
人体杠杆
历史故事
举起地球
杠杆定律
原理提出
古希腊科学家阿基米德在《论平面图形的平衡》一书中提出了杠杆原理。
战国时代的墨子已经对杠杆有所观察,在《墨子 · 经说下》中说“衡,加重于其一旁,必捶,权重相若也。相衡,则本短标长。两加焉重相若,则标必下,标得权也[1] ”。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。[2]
阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”,这句话便是说杠杆原理。
阿基米德首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
这些公理是:
阿基米德
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替
(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的船只顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2这样就是一个杠杆。杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
动力臂延伸
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现上可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
杠杆平衡
杠杆平衡是指杠杆在动力和阻力作用下处于静止状态下或者匀速转动的状态下。
杠杆受力有两种情况:
1.杠杆上只有两个力:
动力×支点到动力作用线的距离=阻力×支点到阻力作用线的距离
即动力×动力臂=阻力×阻力臂
即F1×L1=F2×L2
2.杠杆上有多个力:
所有使杠杆顺时针转动的力的大小与其对应力臂的乘积等于使杠杆逆时针转动的力的大小与其对应力臂的乘积。
这也叫作杠杆的顺逆原则,同样适用于只有两个力的情况。
杠杆分类
杠杆可分为省力杠杆、费力杠杆和等臂杠杆,没有任何一种杠杆既省距离又省力
省力杠杆
L1>L2,F1<F2,省力、费距离。
如拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。
费力杠杆
L1<L2,F1>F2,费力、省距离。
如钓鱼竿、镊子,筷子,船桨裁缝用的剪刀 理发师用的剪刀等。
等臂杠杆
L1=L2,F1=F2,既不省力也不费力,又不多移动距离,
如天平、定滑轮等。
人体杠杆
几乎每一台机器中都少不了杠杆,就是在人体中也有许许多多的杠杆在起作用。拿起一件东西,弯一下腰,甚至翘一下脚尖都是人体的杠杆在起作用,了解了人体的杠杆不仅可以增长物理知识,还能学会许多生理知识。
费力杠杆
其中,大部分为费力杠杆,也有小部分是等臂和省力杠杆。
点一下头或抬一下头是靠杠杆的作用,杠杆的支点在脊柱之顶,支点前后各有肌肉,头颅的重量是阻力。支点前后的肌肉配合起来,有的收缩有的拉长配合起来形成低头仰头,从图里可以看出来低头比仰头要省力。
当曲肘把重物举起来的时候,手臂也是一个杠杆。肘关节是支点,支点左右都有肌肉。这是一种费力杠杆,举起一份的重量,肌肉要花费6倍以上的力气,虽然费力,但是可以省一定距离。
当你把脚尖翘起来的时候,是脚跟后面的肌肉在起作用,脚尖是支点,体重落在两者之间。这是一个省力杠杆,肌肉的拉力比体重要小。而且脚越长越省力。
如果你弯一下腰,肌肉就要付出接近1200牛顿的拉力。这是 由于在腰部肌肉和脊骨之间形成的杠杆也是一个费力杠杆。所以在弯腰提起立物时,正确的姿式是尽量使重物离身体近一 些。以避免肌肉被拉伤。
㈦ 关于杠杆原理的题 ——急!
(2)5kg
由1问可知木棒重心距粗端0.5m。
现在在距粗细1.5m支持它,则支撑点距重心1m,距细端0.5m
由杠杆平衡原理:1m*G=0.5m*98N.
解得 G=49N.
m=G/g=5kg.
㈧ 物理中杠杆的计算公式怎么理解,怎么的得到的,什么原理
杠杆又分称费力杠来杆、省力杠自杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
杠杆可分为省力杠杆、费力杠杆和等臂杠杆,没有任何一种杠杆既省距离又省力,这几类杠杆有如下特征:
省力杠杆
L1>L2,F1<F2,省力、费距离。
如拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。
费力杠杆
L1<L2,F1>F2,费力、省距离。
如钓鱼竿、镊子,筷子,船桨裁缝用的剪刀 理发师用的剪刀等。
等臂杠杆
L1=L2,F1=F2,既不省力也不费力,又不多移动距离,
如天平、定滑轮等。
㈨ 阿基米德为什么要求球体积
阿基米德求球体积是为了推动几何学的发展。具体计算过程如下。
设一圆柱竖直放立水平平面上,底面直径等于高等于2r,中有一内切球,另有底面积为2r的顶点在圆柱上底中心的圆锥。圆锥底面与圆柱下底共面。
用两两相距极近的一组水平平面截这三个立体任取离圆锥顶为h的一片,它厚为Δh。把球上的那片和圆锥上的那片挂在支点在中点,全长为4r的杠杆的左端上,把柱上的那片挂在支点右侧距支点h的点处。
我们可知道,当h足够小时,三者相差无几。
即
V球片≈Δh[πh﹙2r﹣h﹚]
V锥片≈Δhπh2
柱片体积为 V柱片=Δhπr2
设密度皆为1则球片与锥片形成的力矩的绝对值为
2r [πh﹙2r-h﹚+πh2Δ]Δh=4πhΔhr2
上式右端正好有柱片的 力矩的绝对值 ,4为平衡系数。
若将一切碎片都如上挂在杠杆上,则左端的总力矩绝对值为
2r[V球+V锥]
右端的总力矩的4倍为rV柱,而V柱形成的理据是质量集中在其重心,其力臂为重心到支点Oˊ的距离r。
即
2r[V球+V锥]=4rV柱 ①
又已知V锥=8r3/3,V柱=2πr3,
代入①得
V球=4πr3/3