Ⅰ 初三科学杠杆
1.摩擦力与来拉力是一对平自衡力,所以拉力=摩擦力=6N
2.因为是匀速直线运动,所以合力为0
3.图错了
2.两个定滑轮,两个动滑轮,从定滑轮开始绕,最后到地下(由于是在地上啦,那么除了满足F小于500外还要满足绕线最后朝下)
望采纳!
Ⅱ 科学杠杆
答案是B
孩子给绳子一个向下的力,绳子也给孩子一个向上的力,所以孩子这边会轻
(因为二力平衡)
Ⅲ 科学杠杆原理
杠杆的原理就是,动力臂,阻力臂和支点,组成一个简单实用的机械装置,真心在帮你期待采纳,
Ⅳ 小学 科学 杠杆
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。"
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水。在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的。
[编辑本段]杠杆的定义
只要在力的作用下能够绕支撑点转动的坚实物体都是杠杆。
跷跷板、剪刀、扳子、撬棒等,都是杠杆。
[编辑本段]杠杆的性质
杠杆绕着转动的支撑点叫做支点
The lever is called a fulcrum being winding the center of resistance rotating
使杠杆转动的力叫做动力
Make the force that the lever turns be called driving force
阻碍杠杆转动的力叫做阻力
Hinder the force that the lever turns from being called resistance
当动力和阻力对杠杆的转动效果相互抵消时,杠杆将处于平衡状态,这种状态叫做杠杆平衡
Think that driving force composes in reply resistance when effect cancels out each other to the lever rotating , the lever will be called lever balance in equilibrium state , this state
杠杆平衡时保持在水平位置静止或匀速转动。
通过力的作用点沿力的方向的直线叫做力的作用线
The straight line passing the force effect point direction along the force is called the force effect line
Gleam of distance is called an arm of force from fulcrum to the force effect
从支点O到动力F1的作用线的垂直距离L1叫做动力臂
L1 is called a power arm from fulcrum O to driving force F1 effect line distance
从支点O到阻力F2的作用线的垂直距离L2叫做阻力臂
L2 is called the resistance arm from fulcrum O to resistance F2 effect line distance
[编辑本段]杠杆平衡条件
动力臂×动力=阻力臂×阻力,即L1F1=L2F2,由此可以演变为F2/F1=L1/L2
Power arm X driving force = resistance arm X resistance , namely L1F1 = L2F2, can develop into F2/F1 = L1/L2 from this
杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关。
The lever balance is connected with driving force and resistance not only , direction is connected with force effect point and the force effect.
[编辑本段]生活中的杠杆
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向下杠杆是等臂杠杆;第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点在中间,动力臂小于阻,是费力杠杆。
第一种杠杆例如:剪刀、钉锤、拔钉器……杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;还要看重点(阻力点)和支点的距离:重点离支点越近则越省力,越远就越费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)剪纸板时花剪较省力但是费时;而洋裁剪则费力但是省时。
1.剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大。用动力臂较长、阻力臂较短的剪刀。
2.剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,刀口要比较长。用动力臂较短、阻力臂较长的剪刀。
3.剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为了加快修剪速度,剪切整齐,要求剪刀刀口要长。用动力臂较长、阻力臂较短,同时刀口较长的剪刀。
[编辑本段]投资中的杠杆
杠杆比率
认股证的吸引之处,在于能以小博大。投资者只须投入少量资金,便有机会争取到与投资正股相若,甚或更高的回报率。但挑选认股证之时,投资者往往把认股证的杠杆比率及实际杠杆比率混淆,两者究竟有什么分别?投资时应看什么?
想知道是否把这两个名词混淆,可问一个问题:假设同一股份有两只认股证选择,认股证A的杠杆是6.42倍,而认股证B的杠杆是16.22倍。当正股价格上升时,哪一只的升幅较大?可能不少人会选择答案B。事实上,要看认股证的潜在升幅,我们应比较认股证的实际杠杆而非杠杆比率。由于问题缺乏足够资料,所以我们不能从中得到答案。
杠杆比率=正股现货价÷(认股证价格x换股比率)
杠杆反映投资正股相对投资认股证的成本比例。假设杠杆比率为10倍,这只说明投资认股证的成本是投资正股的十分之一,并不表示当正股上升1%,该认股证的价格会上升10%。
以下有两只认购证,它们的到期日和引伸波幅均相同,但行使价不同。从表中可见,以认购证而言,行使价高于正股价的幅度较高,股证价格一般较低,杠杆比率则一般较高。但若投资者以杠杆来预料认股证的潜在升幅,实际表现可能令人感到失望。当正股上升1%时,杠杆比率为6.4倍的认股证A实际只上升4.2%(而不是6.4%),而杠杆比率为16.2倍的认股证B实际只上升6%(而不是16.2.%)。
阿基米德的“理想”
阿基米德进行过力学方面的研究,并将其运用于杠杆和滑轮的机械设计。据说,为了宣扬其研究成果而夸口说:“给我一个支点和足够长的杠杆,我可把地球搬动给你们看。”虽然,他没有搬动地球,却用滑轮移动了大船。
设支点在地球外1万米处,如果一个在地球上可提起60kg的物体,则需要在支点外的1x1024km处才能搬动地球,地球质量6x1024kg.
1个天文单位为地球到太阳之间的平均距离,即1A.U.=1.5x108km,一光年为光在一年前进的距离,1L.Y.≈ 9.5x1012km.
· 支点在地球外10km(1万米)处,这是个难题。
· 11亿光年,远远超出了我们所在的银河系,也越过了从宇宙能得到信息的极限。
——这就是阿基米德的“理想”。
Ⅳ 杠杆原理 科学制作
,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即f1×l1=f2×l2这样就是一个杠杆。
动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆
(力臂
>
力距);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机
(力矩
>
力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
Ⅵ 科学杠杆 帮我
相同点,都是省力杠杆,
不同点:支点位置不同;动力臂、阻力臂不同。
根据图片知道,铁片更省力。
你应该把全部题目呈现出来,这样露一半,不知道怎么回答。
Ⅶ 科学杠杆问题
首先开始时木板左来端下沉,自故当木板开始转动时,即是右端下沉
解:设t秒后开始转动
M甲=20kgM乙=30kg
F甲=G甲=M甲×g=20kg×10N/kg=200N
F乙=G乙=M乙×g=30kg×10N/kg=300N
当木板保持水平平衡时
l甲=(0.1t)米l乙=(1-0.1t)米
F甲×l甲=F乙×l乙
200N×(0.1t)米=300N×(1-0.1t)米
t=6s
因此6s后,木板开始转动
Ⅷ 科学 杠杆问题
把均匀预制板和拖车车板看成一个整体,这样的话整体的重心就不是原预制板的重心,以整体重心为支点,列出三个均匀力的杠杆平衡关系式就可以解答了
Ⅸ 科学中的杠杆原理和数学有什么关系
【教学目标】 科学概念:
1、杠杆有三个点:用力点、支点和阻力点。
2、用力点到支点的距离大于阻力点到支点的距离时省力;
用力点到支点的距离等于阻力点到支点的距离时不省力也不费力; 用力点到支点的距离小于阻力点到支点的距离时费力。
3、杠杆原理在生活中广泛使用,给人们的生活带来更多省力和方便。 过程与方法:
1、科学小游戏:提供一根金属撬棍和金属支点,由学生上台分别用食指按压撬棍两端,激发全体学生的探究热情。
2、学生用自己的文具摆一摆杠杆,揭示杠杆的三个基本点,引出杠杆尺的研究。 3、杠杆尺的探究实验:教师说明和演示杠杆尺的实验探究方法,学生进行杠杆尺实验探究并填写实验记录,最后进行杠杆尺实验的数据分析得出杠杆原理。 4、换位实验:数字化撬棍原理器的实验探究,分析数据,进一步理清杠杆原理。 5、找一找生活中杠杆类工具的杠杆原理。包括:井水抽水机、羊角榔头拔钉子。 情感态度价值观:
1、体会有效体验,认真实验,获取证据,用证据来检验推测的重要性。 2、体验科学探究的乐趣,在科学学习中尊重他人意见,敢于提出不同见解,乐于合作与交流。
3、体会科技提升生活质量,热爱科技创新的科学意识。 【教学重难点】
教学重点:通过实验,体会和理解杠杆原理,找出生活中的杠杆原理。 教学难点:用实验探究的方法理解杠杆原理。 【教学准备】 △ 学生实验:
1、游戏实验材料:一根金属棒、一个金属支点。
2、学生分组实验材料:每组准备杠杆尺(机械实验盒)、两盒砝码。 3、学生实验材料:数字化撬棍原理器(教师自制教具)
Ⅹ 科学:杠杆的定义是什么
物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆。
回古希腊答人将杠杆归类为简单机械。,并且严谨地研究出杠杆的操作原理。某些杠杆能够将输入力放大,给出较大的输出力,这功能称为“杠杆作用”。
杠杆原理:F1L1=F2L2 动力x动力臂=阻力x阻力臂