⑴ 谁能给我讲讲杠杆原理
一个平衡的杠杆(不一定要水平,只要不动或者保持匀速运动就行):
确定一个支点O(任何受力的点都可以,选最好算的)
在杠杆上正好有两个作用力F1和F2,过O作F1 F2所在支线的垂线,长度为L1 和L2,这就是所谓的动力和阻力,动力臂和阻力臂(其实是人为确定的)
有关系式F1×L1=F2×L2
以上是初中物理的定义,更高级、更严谨的在下面,简单来说就是:
设杠杆绕支点O随意转动,则顺时针方向的力的总和等于逆时针方向力的总和。
所以不一定要求两个力分别在支点的两侧,只需要顺时针力做的功等于逆时针做的力的负功就可以是杠杆保持平衡。
从这个方面又可以将杠杆原理推广到滑轮、差动滑轮等等。
⑵ 对于小学生来讲,杠杆的原理是什么
力乘以杆的长度等于另一边的力乘以杆的长度 就是说你这边长了你费的力小
⑶ 如何解释杠杆原理
简单说:杠杆原理亦称“杠杆平衡条件”。
动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。
省力的原理:动力臂>阻力臂
费力的原理:动力臂<阻力臂
即不省力也不费力的原理:动力臂=阻力臂
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
古希腊科学家阿基米德有这样一句流传千古的名言:“假如给我一个支点,我就能把地球挪动!”这句话有着严格的科学根据.
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
⑷ 怎么运用杠杆原理...
要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
⑸ 关于杠杆原理的讲解,越详细越好!!
杠杆原理
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用力点,这样,你看出来了吧?(图1)中,在杠杆右边向下用力,就可以把左方的重物抬起来了;在(图2)中,在杠杆右边向上用力,也能把重物抬起来;在(图3)中,支点在左边、重物在右边,力点在中间,向上用力,也能把重物抬起来。
你注意到了吗?在(图1)中,支点在杠杆中间,物理学里,把这类杠杆叫做第一种杠杆;(图2)是重点在中间,叫做第二种杠杆;(图3)是力点在中间,叫做第三种杠杆。
第一种杠杆例如:剪刀、钉鎚、拔钉器……这种杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离(图1):力点离支点愈远则愈省力,愈近就愈费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠杆的力点一定比重点距离支点远,所以永远是省力的。
第三种杠杆例如:镊子、烤肉夹子、筷子……
这种杠杆的力点一定比重点距离支点近,所以永远是费力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)来剪纸板,花剪较省力但是费时;而洋裁剪则费力但是省时。
⑹ 杠杆原理是什么能不能说的简单一些,因为我只是一名六年级的小学生。
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1•
L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
概念分析
[编辑本段]
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩)
*
受力
=
支点到施力点距离(力臂)
*
施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆
(力臂
>
力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机
(力矩
>
力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
杠杆分类
[编辑本段]
杠杆可分为省力杠杆、费力杠杆和等臂杠杆。这几类杠杆有如下特征:
1.省力杠杆:L1>L2,
F1
评论
0
0
加载更多
⑺ 杠杆原理怎么给五岁的孩子讲
带小家伙去坐跷跷板,实践中告诉孩子其中的道理
⑻ 关于杠杆原理的讲解,简介一下什么是杠杆原理,具体的
关于杠杆原理抄的讲袭解,简介一下什么是杠杆原理,具体的
1、什么是杠杆:能够绕固定点转动的硬棒(物体).
2、杠杆中的“三点、两力、两力臂”:
“三点”:支点——杠杆绕着转动的固定点.常用O表示.
动力作用点——动力在杠杆上的作用位置.
阻力作用点——阻力在杠杆上的作用位置.
“两力”:动力——使杠杆转动的力.常用F1表示.
阻力——阻碍杠杆转动的力.常用F2表示.
“两力臂”:动力臂——支点到动力作用线的距离.常用L1表示.
阻力臂——支点到阻力作用线的距离.常用L2表示.
(力的作用线——过力的作用点沿力的方向的直线.)
3、杠杆的平衡条件(原理):作用在杠杆上的力与它们的力臂成反比.即:
动力×动力臂=阻力×阻力臂 或 动力/阻力=阻力臂/动力臂
数学表达式:F1×L1=F2×L2 或 F1/F2=L2/L1
4、杠杆的分类:a、省力杠杆:在F1×L1=F2×L2中,L1>L2,则F1<F2;
b、费力杠杆:在F1×L1=F2×L2中,L1<L2,则F1>F2;
c、等臂杠杆:在F1×L1=F2×L2中,L1=L2, 则F1=F2.
⑼ 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。内要使杠容杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。