❶ 阿基米德杠杆定律与公式
阿基米德原理是一个普遍适用的规律,其内容为:浸在液体中的物体受到向上的浮力,浮力的大小等于它排开的液体受到的重力。
数学表达式为:F浮=G排
在气体中的物体也受到浮力的作用,同样遵从阿基米德原理阿基米德(Archimedes)定律力学中的基本原理之一。浸在液体里的物体受到向上的浮力作用,浮力的大小等于被该物体排开的液体的重量。 1、物理学中(1)浸在液体(或气体)里的物体受到向上的浮力。浮力的大小等于物体排开的液体(或气体)的重量。这就是著名的“阿基米德定律”(Archimedes' principle)。该定律是公元前200年以前古希腊学者阿基米德(Archimedes, 287-212 BC)所发现的,又称阿基米德原理。浮力的大小可用下式计算:F浮=ρ液(气)gV排。(2)杠杆原理:动力×动力臂=阻力×阻力臂,用代数式表示为F
❷ 杠杆原理的计算公式!在线等!!!!!!!!!
F1*L1=F2*L2力乘以力臂等于力乘以力臂
杠杆平衡条件:F1*l1=F2*l2。
力臂:从支点到力的作用线的垂直距离
杠杆平衡是指杠杆处于静止状态下或者匀速转动的状态下
(2)杠杆定律公式推导扩展阅读:
杠杆可以让“小力”做出“大力”能做的功。
任何机械所输出的能量,都不可能比输入它的能量还多,这是“能量守恒定律”的要求。因此,对于一个理想的机械,它的“能量输出”最多与“能量输入”是相等的,这个时候,机械所输出的功,等于输入它的功。
可以想象一个用杠杆来翘起物体的例子。在过程中,杠杆所输出的功,是“物体的重量”与“物体被抬起的高度”(或者说“输出距离”)的乘积。而输入杠杆的功,则是人所施加的“力”与“向下压的距离”(或者说“输入距离”)的乘积。
在理想的情况下,“输出的功”与“输入的功”相等,也就是“物体的重量”与“输出距离”的乘积,等于“力”与“输入距离”的乘积。这就意味着,在物体的重量一定的前提下,“力”的大小取决于“输入距离”与“输出距离”的比例。
通过调整“力”和“物体”与“支点”的相对远近,使“输入距离”大于“输出距离”,或者对于上面的例子来说,只要让下压的距离稍大于物体需要被抬起来的距离,那么用“小力”所做出来的功,便完全可以等同于一个“大力”所做的功。能够看出,这就是杠杆省力的背后的原因。
参考资来源:杠杆原理
❸ 谁能简单的说杠杆原理
回答即可得2分,回答被采纳则获得悬赏分以及奖杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1•
L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一
❹ 杠杆定律公式即推理过程
原理及公式:杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。
动力×动力臂=阻力×阻力臂,用代数式表示为F1×L1=F2×L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
❺ 杠杆原理及公式
将杠杆原理看作以支点为中心的旋转运动,就比较容易理解了。动力点或专阻力点的移动距离属是由以支点为中心的圆的半径决定的。半径越长,这个点移动的距离就越长,因为这个点就得沿半径更长的圆移动了。
距离变化的同时,也伴随着力的增减。这是因为单纯的杠杆原理是通过以下公式成立的:作用于动力点的力×动力点移动的距离=作用于阻力点的力×阻力点移动的距离。(力×力作用的距离)在物理学中叫做“功”,即人做的功和物体被做的功是相等的(能量守恒定律)。
(5)杠杆定律公式推导扩展阅读
在杠杆原理中,我们把杠杆固定的旋转点称为“支点”。要想举起重物,就要把支点置于尽量靠近物体的地方。
假设人施加力的点(动力点)与支点之间的距离达到支点与使物体移动的点(阻力点)之间距离的5倍。那么,要想撬起地球仪,只需要用地球仪1/5重量的力按压木板即可。
剪刀、起子、镊子、筷子、钳子、杆秤......这些工具都用到了“杠杆原理”。利用杠杆原理,我们可以用很小的力量撬起很重的物体,也可以把短距离移动放大为长距离移动。正因如此,杠杆原理在生活中的应用十分广泛。
❻ 杠杆原理及公式
杠杆原理为了平衡杠杆,作用在杠杆上的两个力矩(力与力臂的乘积)的大小必须相等。
公式:动力×动力臂=阻力×阻力臂,用代数式表示为F₁·L₁=F₂·L₂。式中,F₁表示动力,L₁表示动力臂,F₂表示阻力,L₂表示阻力臂。
使用杠杆时,为了省力,应该使用动力臂比阻力臂长的杠杆;如果想节省距离,应该使用动力臂比阻力臂短的杠杆。所以杠杆可以节省精力和距离。然而,如果想省力,必须移动更多的距离;如果想移动更少的距离,必须花费更多的努力。要想又省力而又少移动距离,是不可能实现的。
(6)杠杆定律公式推导扩展阅读:
杠杆原理的分类:
1、省力杠杆
L1>L2,F1<F2,省力、费距离。
如拔钉子用的羊角锤、铡刀,开瓶器,轧刀,动滑轮,手推车 剪铁皮的剪刀及剪钢筋用的剪刀等。
2、费力杠杆
L1<L2,F1>F2,费力、省距离。
如钓鱼竿、镊子,筷子,船桨裁缝用的剪刀 理发师用的剪刀等。
3、等臂杠杆
L1=L2,F1=F2,既不省力也不费力,又不多移动距离,
如天平、定滑轮等。
❼ 杠杆的原理是什么
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
❽ 二元相图中杠杆定律推导过程
哎呀呀,大学生跑来这里问问题。。。太专业的问题一般网络是不知道的。。。
首先,你要明白二元相图下方是固态,上方是液态,中间是固液混合状。这句是废话,无视吧。
然后,二元相图上的一个点(除过固液混合态)的成分都可以直接读出。这句也是废话,继续无视吧。
再然后呢,固液混合状态比如说O点的成分是要算有多少固态组分有多少液态组分。
接着呢,o点的组分是不是可以用a点和b点来表示?把a和b另外当作A和B轴,o点的组分不就是a×ob+b×0a=a×xxS+b×xxL。对吧。
最后呢,把a和b的组分也写进去就好了。a=A×BxL+B×AxL,b=A×BxS+B×AxS。
还剩一点点,Qo×Ax,自己闹吧,合并同类项么。
❾ 杠杆定律 原理以及公式、用法
杠杆比率=正股现货价÷(认股证价格x换股比率) 杠杆又分称费力杠专杆、省力杠杆和等臂杠属杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。来源于《论平面图形的平衡》。
❿ 什么是杠杆原理
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡专条件”。要使杠属杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。
即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
(10)杠杆定律公式推导扩展阅读:
杠杆定理:
1、在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡。
2、在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾。
3、在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾。
4、一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替。
5、相似图形的重心以相似的方式分布。