『壹』 在用光杠杆法测杨氏模量的实验中,光杠杆法有什么优点
放大实验现象,便于观察
『贰』 用光杠杆放大法测量微小长度变化有什么优点,怎样提高光杠杆放大系统的放大倍数呢
可以提高测量长度的精确度,可以拉远光源与显示屏距离或拉近光源于被测点的距离
『叁』 杨氏弹性模量实验中,为什么光杠杆系统可以测量出长度的微小变化其放大倍数与哪些量有关
光杠杆法是利用当钢丝伸长微小的距离,反射镜会偏转一个微小的角度,使得镜子里标尺的刻度像会变化一定刻度,通过刻度变化可以计算出钢丝长度变化。放大倍数与镜面到尺面距离,镜子支架长度有关。
光杠杆放大法是一种利用光学放大方法测量微小位移的装置。由于在拉伸法测量杨氏模量的实验中,金属丝的伸长量很难测量,所以必须使用光杠杆放大后,才能够测量出来。
(3)利用光杠杆测微小变化量有何优点扩展阅读:
注意事项:
在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中成像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为 。当钢丝下降DL时,平面镜将转动q角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。
『肆』 光杠杆镜利用了什么原理有什么优点
光杠杆两个前足尖放在弹性模量测定仪的固定平台上,而后足尖放在待测金属丝的测量端面上。金属丝受力产生微小伸长时告滑扮,光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度;
这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放让正大成较大的线位移。在长度或位置差别甚小的测量中,这是一个简单有效的方法。它是一块安装在三个支点上的平面镜。
『伍』 用拉伸法测量金属丝的杨氏模量中,光杠杆镜尺法有何优点
1、可以简单准确地将微小形变放大;
2、测量,读数简单;
3、通常用光学方法测形变,都是将微小形变放大;
光杠杆镜尺法是一种利用光学放大方法测量微小位移的装置。由于,在拉伸法测量杨氏模量的实验中,金属丝的伸长量很难测量,所以必须使用光杠杆放大后,才能够测量出来。用光杠杆镜尺法相对来说,测量方法和仪器设备都很简单,好操作。
(5)利用光杠杆测微小变化量有何优点扩展阅读:
拉伸试验中得到的屈服极限бS和强度极限бb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑型变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
『陆』 大学物理实验的3道思考题。急!!!
用拉伸法测量杨氏弹性模量
任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。发生弹性形变时,物体内部产生恢复原状的内应力。弹性模量是反映材料形变与内应力关系的物理量,是工程技术中常用的参数之一。
一. 实验目的
1. 学会用光杠杆放大法测量长度的微小变化量。
2. 学会测定金属丝杨氏弹性模量的一种方法。
3. 学习用逐差法处理数据。
二. 实验仪器
杨氏弹性模量测量仪支架、光杠杆、砝码、千分尺、钢卷尺、标尺、灯源等。
三. 实验原理
在形变中,最简单的形变是柱状物体受外力作用时的伸长或缩短形变。设柱状物体的长度为L,截面积为S,沿长度方向受外力F作用后伸长(或缩短)量为ΔL,单位横截面积上垂直作用力F/S称为正应力,物体的相对伸长ΔL/L称为线应变。实验结果证明,在弹性范围内,正应力与线应变成正比,即
(3-1-1)
这个规律称为虎克定律。式中比例系数Y称为杨氏弹性模量。在国际单位制中,它的单位为N/m2,在厘米克秒制中为达因/厘米2。它是表征材料抗应变能力的一个固定参量,完全由材料的性质决定,与材料的几何形状无关。
本实验是测钢丝的杨氏弹性模量,实验方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量ΔL,即可求出Y。钢丝长度L用钢卷尺测量,钢丝的横截面积 ,直径 用千分尺测出,力F由砝码的质量求出。在实际测量中,由于钢丝伸长量ΔL的值很小,约 数量级。因此ΔL的测量采用光杠杆放大法进行测量。
(a) (b)
1—反射镜和透镜;2—活动托台;3—固定托台;4—标尺;5—光源
图3-1-1 光杠杆装置及测量原理图
光杠杆是根据几何光学原理,设计而成的一种灵敏度较高的,测量微小长度或角度变化的仪器。它的装置如图3-1-1(a)所示,是将一个可转动的平面镜M固定在一个⊥形架上构成的。
图3-1-1(b)是光杠杆放大原理图,假设开始时,镜面M的法线正好是水平的,则从光源发出的光线与镜面法线重合,并通过反射镜M反射到标尺n0处。当金属丝伸长ΔL,光杠杆镜架后夹脚随金属丝下落ΔL,带动M转一θ角,镜面至M′,法线也转过同一角度,根据光的反射定律,光线On0和光线On的夹角为2θ。
如果反射镜面到标尺的距离为D,后尖脚到前两脚间连线的距离为b,则有
;
由于θ很小,所以 ;
消去θ,得 ( ) (3-1-2)
由于伸长量ΔL是难测的微小长度,但当取D远大于b后,经光杠杆转换后的量 却是较大的量,2D/b决定了光杠杆的放大倍数。这就是光放大原理,它已被应用在很多精密测量仪器中。如:灵敏电流、冲击电流计、光谱仪、静电电压表等。
将(3-1-2)式代入(3-1-1)式得:
(3-1-3)
本实验使钢丝伸长的力F,是砝码作用在纲丝上的重力mg,因此杨氏弹性模量的测量公式为:
(3-1-4)
式中,Δn与m有对应关系,如果m是1个砝码的质量,Δn应是荷重增(或减)1个砝码所引起的光标偏移量;如果Δn是荷重增(或减)4个砝码所引起的光标偏移量,m就应是4个砝码的质量。
图3-1-2 测量装置图
四. 实验内容
1. 仪器调节
(1)按图3-1-2安装仪器,调节支架底座螺丝,使底座水平(观察底座上的水准仪)。
(2)调节反射镜,使其镜面与托台大致垂直,再调光源的高低,使它与反射镜面等高。
(3)调节标尺铅直,调节光源透镜及标尺到镜面间的距离D,使镜头刻线在标尺上的像清晰。再适当调节反射镜的方向、标尺的高低,使开始测量时光线基本水平,刻线成像大致在标尺中部。记下刻线像落在标尺上的读数为n。
注意:此时仪器已调好,在测量时不能再调了!
2. 测量
(1)逐次增加砝码,每加一个砝码记下相应的标尺读数 ,共加8次,然后再将砝码逐个取下,记录相应的读数 ′,直到测出 为止。
加减砝码时,动作要轻,防止因增减砝码时使平面反射镜后尖脚处产生微小振动而造成读数起伏较大。
(2)取同一负荷下标尺读数的平均值 ,用逐差法求出钢丝荷重增减4个砝码时光标的平均偏移量Δn。
(3)用钢卷尺测量上、下夹头间的钢丝长度L,及反射镜到标尺的距离D。
(4)将光杠杆反射镜架的三个足放在纸上,轻轻压一下,便得出三点的准确位置,然后在纸上将前面两足尖连起来,后足尖到这条连线的垂直距离便是b。
(5)用千分尺测量钢丝直径d,由于钢丝直径可能不均匀,按工程要求应在上、中、下各部进行测量。每位置在相互垂直的方向各测一次。
五. 数据处理
1.测量钢丝的微小伸长量,记录表如下
序号
i
砝码质量
M(Kg)
光标示值ni(cm)
光标偏移量
δn=ni+4-ni(cm)
偏差
∣δ(δn)∣
增荷时
减荷时
平均值
0
1
2
3
4
5
6
7
钢丝微小伸长量的放大量的测量结果为Δn=( ± )cm
2. 测量钢丝直径记录表 d0= mm
测量部位
上 部
中 部
下 部
平均值
测量方向
纵 向
横向
纵 向
横 向
纵 向
横 向
d(mm)
不确定度 mm
测量结果d=( ± )mm
3. 单次测L、D、b值:
L=( ± )m;
D=( ± )m;
b=( ± )m
4. 将所得各量带入(3-1-4)式,计算出金属丝的杨氏弹性模量,按传递公式计算出不确定度,并将测量结果表示成标准式 ( ± )N/m2。
六.问题讨论
1. 两根材料相同,但粗细、长度不同的金属丝,它们的杨氏弹性模量是否相同?
2. 光杠杆有什么优点?怎样提高光杠杆的灵敏度?
3. 在实验中如果要求测量的相对不确定度不超过5%,试问,钢丝的长度和直径应如何选取?标尺应距光杠杆的反射镜多远?
4. 是否可以用作图法求杨氏弹性模量?如果以所加砝码的个数为横轴,以相应变化量为纵轴,图线应是什么形状?
附表:常用金属与合金的杨氏弹性模量
物质名称
杨氏弹性模量
(1011达因/厘米2)
物 质 名 称
杨氏弹性模量
(1011达因/厘米2)
铝
7.0
铸铜(99.9%)
7.44
铸铁(99.99%)
13.8
精炼或韧炼铜(99.99%)
8.00
韧炼铁(99.99%)
17.2
黄铜
11.0
钢
17.2~22.6
磷青铜
12.0
铂(韧炼 99.99%)
14.7
锰铜
10.3
钨
34
康铜
15.2
铅(模砂铸造99.73%)
1.38
镍铬
21.0
『柒』 用静态法测量金属丝杨氏模量思考题求解,急 1)试验中长度用不同的仪器测量,为什么光杠杆镜尺法有何优
试验中所需要的各个参数的量级和误差要求不同,所以使用不同方法测量
光杠杆可以大幅放大微小变化量,且放大倍数稳定,结果准确。(光线的直线传播可靠度很高,远胜于机械仪器)
『捌』 拉伸法测杨氏模量实验中那个量的测量误差对结果影响较大如何进一步改进
为了测量细钢丝的微小长度变化,实验中使用了光杠杆放大法,光杠杆的作用是将微小长度变化放大为标尺上的位置变化,通过较易准确测量的长度测量间接求得钢丝伸长的微小长度变化。
利用光杠杆不仅可以测量微小长度变化,也可测量微小角度变化和形状变化。由于光杠杆放大法具有稳定性好、简单便宜、受环境干扰小等特点,在许多生产和科研领域得到广泛应用。
提高光杠杆测量微小长度变化的灵敏度,主要需要增加平面镜到标尺的距离,这样可以增加光杠杆的放大倍数。
测量误差对结果影响较大的量主要是光杠杆常数、钢丝直径、标尺读数,因为这些量的测量相对误差比较大。
当自变量与因变量成线性关系时,对于自变量等间距变化的多次测量,如果用求差平均的方法计算因变量的平均增量,就会使中间测量数据俩两抵消,失去利用多次测量求平均的意义。为了避免这种情况下中间数据的损失,可以用逐差法处理数据。