导航:首页 > 汇率佣金 > Python爬机构持仓

Python爬机构持仓

发布时间:2022-05-13 13:06:30

㈠ 如何用python 爬虫抓取金融数据

获取数据是数据分析中必不可少的一部分,而网络爬虫是是获取数据的一个重要渠道之一。鉴于此,我拾起了Python这把利器,开启了网络爬虫之路。

本篇使用的版本为python3.5,意在抓取证券之星上当天所有A股数据。程序主要分为三个部分:网页源码的获取、所需内容的提取、所得结果的整理。

一、网页源码的获取

很多人喜欢用python爬虫的原因之一就是它容易上手。只需以下几行代码既可抓取大部分网页的源码。

为了减少干扰,我先用正则表达式从整个页面源码中匹配出以上的主体部分,然后从主体部分中匹配出每只股票的信息。代码如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之间的所有代码pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之间的所有信息

其中compile方法为编译匹配模式,findall方法用此匹配模式去匹配出所需信息,并以列表的方式返回。正则表达式的语法还挺多的,下面我只罗列所用到符号的含义。

语法 说明

. 匹配任意除换行符“ ”外的字符

* 匹配前一个字符0次或无限次

? 匹配前一个字符0次或一次

s 空白字符:[<空格> fv]

S 非空白字符:[^s]

[...] 字符集,对应的位置可以是字符集中任意字符

(...) 被括起来的表达式将作为分组,里面一般为我们所需提取的内容

正则表达式的语法挺多的,也许有大牛只要一句正则表达式就可提取我想提取的内容。在提取股票主体部分代码时发现有人用xpath表达式提取显得更简洁一些,看来页面解析也有很长的一段路要走。

三、所得结果的整理

通过非贪婪模式(.*?)匹配>和<之间的所有数据,会匹配出一些空白字符出来,所以我们采用如下代码把空白字符移除。

stock_last=stock_total[:] #stock_total:匹配出的股票数据for data in stock_total: #stock_last:整理后的股票数据
if data=='':
stock_last.remove('')

最后,我们可以打印几列数据看下效果,代码如下

print('代码',' ','简称',' ',' ','最新价',' ','涨跌幅',' ','涨跌额',' ','5分钟涨幅')for i in range(0,len(stock_last),13): #网页总共有13列数据
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

㈡ Python 如何爬股票数据

现在都不用爬数据拉,很多量化平台能提供数据接口的服务。像比如基础金融数据,包括沪深A股行情数据,上市公司财务数据,场内基金数据,指数数据,期货数据以及宏观经济数据;或者Alpha特色因子,技术分析指标因子,股票tick数据以及网络因子数据这些数据都可以在JQData这种数据服务中找到的。
有的供应商还能提供level2的行情数据,不过这种比较贵,几万块一年吧

㈢ python爬虫一般都爬什么信息

python爬虫一般都爬什么信息?
一般说爬虫的时候,大部分程序员潜意识里都会联想为Python爬虫,为什么会这样,我觉得有两个原因:
1.Python生态极其丰富,诸如Request、Beautiful Soup、Scrapy、PySpider等第三方库实在强大
2.Python语法简洁易上手,分分钟就能写出一个爬虫(有人吐槽Python慢,但是爬虫的瓶颈和语言关系不大)
爬虫是一个程序,这个程序的目的就是为了抓取万维网信息资源,比如你日常使用的谷歌等搜索引擎,搜索结果就全都依赖爬虫来定时获取
看上述搜索结果,除了wiki相关介绍外,爬虫有关的搜索结果全都带上了Python,前人说Python爬虫,现在看来果然诚不欺我~
爬虫的目标对象也很丰富,不论是文字、图片、视频,任何结构化非结构化的数据爬虫都可以爬取,爬虫经过发展,也衍生出了各种爬虫类型:
● 通用网络爬虫:爬取对象从一些种子 URL 扩充到整个 Web,搜索引擎干的就是这些事
● 垂直网络爬虫:针对特定领域主题进行爬取,比如专门爬取小说目录以及章节的垂直爬虫
● 增量网络爬虫:对已经抓取的网页进行实时更新
● 深层网络爬虫:爬取一些需要用户提交关键词才能获得的 Web 页面
不想说这些大方向的概念,让我们以一个获取网页内容为例,从爬虫技术本身出发,来说说网页爬虫,步骤如下:
模拟请求网页资源
从HTML提取目标元素
数据持久化
相关推荐:《Python教程》以上就是小编分享的关于python爬虫一般都爬什么信息的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

㈣ 如何用python计算某支股票持有90天的收益率

首先你要先获得这支股票90天的数据,可以存在一个arry中。
然后计算收益率 r = (arry[89]-arry[0])/arry[0],如果要计算任意连续90天的话只要循环就可以了。
许多人更喜欢去做短线,因为短线刺激,无法承受长线持股待涨的煎熬,可是假如不会做短线,则可能会导致亏得更快。做T的秘籍大家一定很想知道,今天就给大家讲讲。
我准备了好处给大家,机构精选的牛股大盘点!希望大家不要错过--速领!今日机构牛股名单新鲜出炉!
一、股票做T是什么意思
现在市场上,A股的交易市场模式是T+1,意思就是今天买的股票,只有明天才能卖出。
而股票做T,当天买入的股票在当天卖出,这就是股票进行T+0的交易操作,投资人在可交易的一天通过股票的涨幅和跌停有了股票差价,在股票大幅下跌时赶紧买入,涨得差不多之后再将买入的部分卖出,就是用这种方法赚钱的。
假如说,在昨天我手里还有1000股的xx股票,市价10元/股。今天一大早发现该股居然跌到了9.5元/股,然后趁机买入了1000股。结果到了下午时,这只股票的价格就突然间大幅上涨到一股10.5元,我就急忙地以10.5/股的价格售出1000股,然后获取(10.5-9.5)×1000=1000元的差价,这就是做T。
但是,不是每种股票做T都合适!正常来说,那些日内振幅空间较大的股票,它们是适合去做T的,比如说,每日能有5%的振幅空间。想知道某只股票适不适合的,点开这里去看一下吧,专业的人员会为你估计挑选出最适合你的T股票!【免费】测一测你的股票到底好不好?

二、股票做T怎么操作
怎么才能够把股票做到T?正常情况下分为两种方式,分别为正T和倒T。
正T即先买后卖,投资手里,手里面赚有这款股票,在当天股票开盘的时候下跌到了最低点时,投资者买入1000股,等到股票变高的时候在高点,将这1000股彻底卖出,持有的总股票数还是跟以前一样,T+0的效果这样就能够达到了,又能够享有中间赚取的差价。
而倒T即先卖后买。投资者通过严密计算得出,股票存在下降风险,因此在高位点先卖出手中的一部分股票,接着等股价回落后再去买进,总量仍旧有办法保持不变,然而,收益是会产生的。
比方投资者,他占有该股2000股,而10元/股是当天早上的市场价,觉得持有的股票在短时间内就会有所调整,,于是卖出手中的1500股,等股票跌到一股只需要9.5元时,这只股票差不多就已经能让他们感到满意了,再买入1500股,这就赚取了(10-9.5)×1500=750元的差价。
这时有人就问了,那要如何知道买入的时候正好是低点,卖出的时候正好是高点?
其实有一款买卖点捕捉神器,它能够判断股票的变化趋势,绝对能让你每次都抓住重点,点开链接就能立刻领取到了:【智能AI助攻】一键获取买卖机会

应答时间:2021-09-23,最新业务变化以文中链接内展示的数据为准,请点击查看

㈤ 如何用python爬取nba数据中心的数据

爬取的网站为:stat-nba.com,本文爬取的是NBA2016-2017赛季常规赛至2017年1月7日的数据

改变url_header和url_tail即可爬取特定的其他数据。

源代码如下:

[python]view plain

㈥ 如何使用python 抓取雪球网页

现在关注一个组合,就会有持仓变动的提示了。不过我觉得这事情挺有意思的。比如可以把很多持仓的数据都抓下来,做一些综合的分析,看看现在网站上被持有最多的股票是哪一支,某一天被调入最多的又是哪一支之类。
于是我决定来抓抓看,顺便借此说说我通常用程序做自动抓取的过程。
Step.1 分析页面
要抓一个网页,首先自然是要“研究”这个网页。通常我会用两种方式:
一个是 Chrome 的 Developer Tools。通过它里面的 Network 功能可以看到页面发出的所有网络请求,而大多数数据请求都会在 XHR 标签下。点击某一个请求,可以看到其具体信息,以及服务器的返回结果。很多网站在对于某些数据会有专门的请求接口,返回一组 json 或者 XML 格式的数据,供前台处理后显示。

另一个就是直接查看网页源代码。通常浏览器的右键菜单里都有这个功能。从页面的 HTML 源码里直接寻找你要的数据,分析它格式,为抓取做准备。
对于雪球上的一个组合页面 粗略地看了一下它发出的请求,并没有如预想那样直接找到某个数据接口。看源代码,发现有这样一段:
SNB.cubeInfo = {"id":10289,"name":"誓把老刀挑下位","symbol":"ZH010389" ...此处略过三千字... "created_date":"2014.11.25"}
SNB.cubePieData = [{"name":"汽车","weight":100,"color":"#537299"}];

cubeInfo 是一个 json 格式的数据,看上去就是我们需要的内容。一般我会找个格式化 json 的网站把数据复制进去方便查看。

这应该就是组合的持仓数据。那么接下来,一切似乎都简单了。只要直接发送网页请求,然后把其中 cubeInfo 这段文字取出,按 json 读出数据,就完成了抓取。甚至不用动用什么 BeautifulSoup、正则表达式。
Step.2 获取页面
分析完毕,开抓。
直接 urllib.urlopen 向目标网页发送请求,读出网页。结果,失败了……
看了下返回结果:
403 Forbidden
You don't have permission to access the URL on this server. Sorry for the inconvenience.

被拒了,所以这种赤裸裸地请求是不行的。没关系,那就稍微包装一下:
send_headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.81 Safari/537.36',
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Connection':'keep-alive',
'Host':'xueqiu.com',
'Cookie':r'xxxxxx',
}
req = urllib2.Request(url, headers=send_headers)
resp = urllib2.urlopen(req)
html = resp.read()

header 数据都可以从 Developer Tools 里拿到。这次顺利抓到页面内容。
一般网站或多或少都会对请求来源做一些阻拦,通过加 header 可以搞定大部分情况。
Step.3 提取数据
因为这个数据比较明显,直接用通过一些字符串查找和截取操作就可以取出来。
pos_start = html.find('SNB.cubeInfo = ') + len('SNB.cubeInfo = ')
pos_end = html.find('SNB.cubePieData')
data = html[pos_start:pos_end]
dic = json.loads(data)

dic 就是一个包含数据的字典对象。之后想干什么就随便你了。
对于复杂一点的情况,可以通过 BeautifulSoup 来定位 html 标签。再不好办的,就用正则表达式,基本都可以解决掉。
Step.4 处理数据
因为我想对数据进行持久化存储,并且做展示和分析,所以我用了 django 里的 ORM 来处理抓下来的数据。
# add Portfolio
portfolio, c = models.Portfolio.objects.get_or_create(code=dic['symbol'])
portfolio.name = dic['name']
portfolio.earnings = dic['total_gain']
portfolio.save()
# add Stock
stocks = dic['view_rebalancing']['holdings']
for s in stocks:
stock, c = models.Stock.objects.get_or_create(code=s['stock_symbol'])
stock.name = s['stock_name']
stock.count += 1
stock.weight += s['weight']
stock.save()

Portfolio 记录下组合及其收益,Stock则记录每支股票的被收录数和总收录份额。
对于抓取到的,一般也可以存在文件中,或者直接通过 SQL 存入数据库,视不同情况和个人喜好而定。
Step.5 批量抓取
前面的一套做下来,就完整地抓取了一组数据。要达到目的,还要设计一下批量抓取的程序。
一个要解决的问题就是如何获得组合列表。这个可以再通过另一个抓取程序来实现。然后根据这些列表来循环抓取就可以了。
若要细究,还要考虑列表如何保存和使用,如何处理抓取失败和重复抓取,如何控制抓取频率防止被封,可否并行抓取等等。
Step.6 数据分析
数据有了,你要怎么用它,这是个很大的问题。可以简单的统计现象,也可以想办法深入分析背后隐藏的逻辑。不多说,我也还只是在摸索之中。

㈦ python爬虫爬取的数据可以做什么

爬虫的概念是,爬取网上能看到的数据,也就是只要网上存在的,通过浏览器可以看到的数据。爬虫都可以爬取。爬虫爬取的原理就是伪装成浏览器,然后进行爬取操作

哪些数据你需要你就可以爬取。比如爬取公司竞争对手的商业数据,爬取电影,音乐,图片等等的。只要你希望得到的,前提浏览器可以访问的都可以爬取

㈧ 怎么学python爬取财经信息

本程序使用Python 2.7.6编写,扩展了Python自带的HTMLParser,自动根据预设的股票代码列表,从Yahoo Finance抓取列表中的数据日期、股票名称、实时报价、当日变化率、当日最低价、当日最高价。

由于Yahoo Finance的股票页面中的数值都有相应id。

例如纳斯达克100指数ETF(QQQ)
其中实时报价的HTML标记为

[html]view plain

㈨ 如何用Python写一个抓取天天基金网上每个基金经理业绩的爬虫

摘要 亲您好,很高兴为您解答,语言:python

阅读全文

与Python爬机构持仓相关的资料

热点内容
证券公司金融分析 浏览:560
期货仓单与持仓量 浏览:973
厦门国际信托有限公司公司 浏览:176
历史大底中的股票 浏览:210
台湾的货款是进外汇账户 浏览:446
微盘金属交易所 浏览:443
佣金占收入的百分之多少 浏览:168
理财投资结束语 浏览:54
天齐锂业最新股票 浏览:447
p2c理财产品收益 浏览:723
郑州亿成金融服务外包有限公司 浏览:270
期货青泽合集 浏览:693
浙能集团算是好单位吗 浏览:630
永辉超市股份占比情况 浏览:494
金融服务图片 浏览:735
特斯拉股票超丰田 浏览:920
公司企业理财产品 浏览:446
牛可以用来融资租赁吗 浏览:949
如何加强对融资的监管 浏览:110
天地集团 浏览:504