Ⅰ 铁碳相图中杠杆原理的实验意义是什么
在简单的二元系相图中,恒温连接线和液相线固相线有两个焦点,处在连接线上任一点所代表的体系状态都会发生两相平衡,体系成分固定后,AB两项成分分别是xbA和xbB,根据质量守恒,该温度平衡的AB两项的相对量。
AA(wA)=(xbB-xb)/(xbB-xbA),AB(wB)=(xb-xbB)/(xbB-xbA)。
杠杆定律由于质量守恒推导出来的,不一定平衡才满足。无论系统是否平衡都应该满足杠杆原理。
(1)杠杆长度为两相区的宽度扩展阅读
铁碳合金相图中有三个等温过程,分别是包晶(线 HIB)、共晶(线 ECF)及共析(线 PSK)。
点H:δ铁素体中,最大碳溶解度的点 点 I:包晶 δ+L → γ。
当钢加热或冷却的时候,会出现一些特性不连续变化的情形,主要有以下几点。
A1–线P-S-K,当碳含量>0.02%时,超过723°C时奥氏体会分解为珠光体。
A2–线M-O,加热超过769°C(居里点)时会失去铁磁性。
A3–线G-O-S,冷却时会形成含碳量较少的铁素体,从奥氏体中游离的碳会开始累积,直到温度到723°C的共析温度为止。
Ⅱ 杠杆计算公式
设动力F1、阻力F2、动力臂长度L1、阻力臂长度L2,则
杠杆原理关系式为:F1L1=F2L2
可有以下四种变换式:
F1=F2L2/L1
F2=F1L1/L2
L1=F2L2/F1
L2=F1L1/F2
杠杆五要素:
1、支点:杠杆绕着转动的点,通常用字母O来表示。
2、动力:使杠杆转动的力,通常用F1来表示。
3、阻力:阻碍杠杆转动的力,通常用F2来表示。
4、动力臂:从支点到动力作用线的距离,通常用L1表示。
5、阻力臂:从支点到阻力作用线的距离,通常用L2表示。
(注:动力作用线、阻力作用线、动力臂、阻力臂皆用虚线表示。力臂的下角标随着力的下角标而改变。例:动力为F3,则动力臂为L3;阻力为F5,阻力臂为L5。)
(2)杠杆长度为两相区的宽度扩展阅读:
杠杆的平衡条件 :
动力×动力臂=阻力×阻力臂
公式:
F1×L1=F2×L2变形式:
F1:F2=L2:L1动力臂是阻力臂的几倍,那么动力就是阻力的几分之一。
公式:
F1×L1=F2×L2一根硬棒能成为杠杆,不仅要有力的作用,而且必须能绕某固定点转动,缺少任何一个条件,硬棒就不能成为杠杆,例如酒瓶起子在没有使用时,就不能称为杠杆。
动力和阻力是相对的,不论是动力还是阻力,受力物体都是杠杆,作用于杠杆的物体都是施力物体。
Ⅲ 阿基米德杠杆定律与公式
阿基米德原理是一个普遍适用的规律,其内容为:浸在液体中的物体受到向上的浮力,浮力的大小等于它排开的液体受到的重力。
数学表达式为:F浮=G排
在气体中的物体也受到浮力的作用,同样遵从阿基米德原理阿基米德(Archimedes)定律力学中的基本原理之一。浸在液体里的物体受到向上的浮力作用,浮力的大小等于被该物体排开的液体的重量。 1、物理学中(1)浸在液体(或气体)里的物体受到向上的浮力。浮力的大小等于物体排开的液体(或气体)的重量。这就是著名的“阿基米德定律”(Archimedes' principle)。该定律是公元前200年以前古希腊学者阿基米德(Archimedes, 287-212 BC)所发现的,又称阿基米德原理。浮力的大小可用下式计算:F浮=ρ液(气)gV排。(2)杠杆原理:动力×动力臂=阻力×阻力臂,用代数式表示为F
Ⅳ 杠杆定律
杠杆定律
杠杆定律 定义:在结晶过程中,液、固二相的成分分别沿液相线和固相线变化。液、固二相的相对量关系,如同力学中的杠杆定律。因此,在相平衡的计算中,称式(1-9)为杠杆定律。必须注意:杠杆定律只适用于两相平衡区中,两平衡相的相对含量计算。 如图,合金x在温度T1由两相平衡并存,这时两相的成分和数量保持不变。过x点作水平线交液相线和固相线于a、c点,在某一温度下液、固两相的相对量可用杠杆定律来计算
亲在网络上可以查到。
Ⅳ 杠杆定律的作用
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等.
能用较小的力举起更重的物体
Ⅵ 工程材料 中杠杆原理 谁能详细说明下 就是用来计算各成分量的那个原理
在工程材料中没有杠杆原理,只有杠杆定律,杠杆定律适用所有两相平衡。
杠杆规则广泛应用在相平衡中,可以简述为 “一相的量乘以本侧线段长度, 等于另一相的量乘以另一侧线段的长”。由于形式上与力学中杠杆定理十分相似,故称为杠杆定律。
杠杆定律是确定两相区内两个组成相(平衡相)以及相的成分和相的相对量的重要法则。
若要确定成分为C含量Wc=x%的铁碳合金在t温度下是由哪两个相组成以及各相的成分时,可通过该合金线上相当于t温度画一水平线,水平线所接触的两个相区中的相就是该合金在t温度时共存的两个相,交点的横坐标就是在该温度下平衡的两个相的成分,两相的相对量和水平线被Wc=x%合金线分成的两线段的长度成反比。
(6)杠杆长度为两相区的宽度扩展阅读:
利用杠杆定律求解铁碳合金的相组分和组织组分的相对量,关键在于分清相组分和组织组分两个概念以及确定杠杆的支点和成分点。
由于杠杆定律只适用于两相区,因此必须依据合金的平衡结晶过程,找出对应的两相区,使组织组分与相应的相组分相对应,才能用杠杆定律计算组织组分和相组分的相对百分含量。
Ⅶ 关于杠杆
应该选A
图上可能只是大致的画了一下挂砝码的位置(力臂)
题目并没有说两个力臂的长度关系 但他说了正好平衡 还说了每只砝码重量相等 所以图中画的砝码的数量可以相信
可以自己假设一下力臂的长度
左边2*F1=3*F2右边(F1:左边力臂;F2:右边力臂)
这样就知道两边力臂的关系了
现在可以进行下一步计算了
不要把对题目的理解局限在自己主观的感受上
遇到问题时要多分析下题目 揣测出题人的本意
Ⅷ 杠杆长度与力的关系
杠杆长度与力的关系杠杆长度越长,用力越小。
杠杆力原理就是杠杆传递的力的原理。F为动力,F'为阻动力(就是棒受大石头的受力点棒使出的力),R'为阻动力的力臂。
公式这样写:
动力×动力臂=阻力×阻力臂,即F1×l1=F2×l2这样就是一个杠杆。杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂)。
但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
Ⅸ 杠杆定律是什么
是杠杆平衡条件吧:
要使杠杆平衡,作用在杠杆上的两个力(动力内和阻力)的大小跟它容们的力臂成反比。
动力×动力臂=阻力×阻力臂,用代数式表示为F• L1=W•L2。
式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。
从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
Ⅹ 相图 杠杆原理
所谓杠杆法则,是指:某一成分的二元合金在某个温度时,如果处于二元相图的两相区,则两相之间的重量比可用“杠杆法则”求得。在此温度做水平线与两相区的相界线相交,两交点内水平线被合金的成分垂线分成二段,两相的重量比与这两线段的长度成反比。
1杠杆法则的推导及使用原则
设合金重量为W,平衡存在的两相的重量分别为W1、W2,则必然存在:
W=W1+W2 (1)
其次,设合金的成分为x,两相的成分分别为:x1、x2;且x1<x<x2。
则必然:Wx=W1x1+W2x2 (2)
根据公式⑴,可以得到:1=W1W+W2W (3)
根据公式(2),可以得到:x=W1Wx1+W2Wx2 (4)
将(3)式变换成下面两式:1-W2W=W1W、1-W1W=W2W;再带入(4),分别可以得到:
W1W=x2-xx2-x1、W2W=x-x1x2-x1;
则:W1W2=x2-xx-x1
上式所反映的关系,确实很像力学中的杠杆平衡,所以被叫做杠杆法则,或者截线法则以及杠杆定律。必须指出的是,在合金相图中,杠杆法则只能在两相平衡的状态下使用,这是基本使用原则。