1. 生活中的杠杆原理应用
杠杆原理基本有3种类型,第一类的杠杆例子是天平、剪刀、钳子等,第二类杠杆的例子是开瓶器、胡桃夹,第三类杠杆如锤子、镊子等。
杠杆分为3种杠杆。第一种是省力的杠杆,如:开瓶器等。第二种是费力的杠杆,如:镊子等。第三种是既不省力也不费力的杠杆,如:天平、钓鱼竿等。
还有工程上的吊车,滑轮等。
(1)拓展杠杆原理扩展阅读:
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
如钳子、杆秤杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。
动力×动力臂=阻力×阻力臂,用代数式表示为F1•l1=F2•l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。
从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。
但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。杠杆可分为省力杠杆、费力杠杆和等臂杠杆。
2. 杠杆的工作原理
要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。因此要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。
当杠杆的动力点到支点的距离大于阻力点到支点的距离时是省力杠杆,反之则是费力杠杆。杠杆可分为省力杠杆、费力杠杆和等臂杠杆。
杠杆原理的应用:
1、省力杠杆:L1>L2, F1<f2 ,省力、费距离。如拔钉子用的羊角锤、铡刀,瓶盖扳子等。
2、费力杠杆: L1<L2, F1>F2,费力、省距离。如钓鱼竿、镊子等。
3、等臂杠杆: L1=L2, F1=F2,既不省力也不费力,又不多移动距离。如天平、定滑轮等。
3. 股票中的杠杆原理是什么意思
股票中的杠杆原理指的是以借款方式取得资金来购买的股票,特别是指利用保证金信用交易而购买的股票。在投资中,所谓的杠杆作用,就是指在资本结构中,利用一部分固定利率的资金,如公司债,优先股等,来提高普通股的投资报酬率。支付公司债利率或付于优先股的股利是事先约定的,如果企业经营所获利润,高于此项固定利率,则支付公司债利息或优先股股利以后,所余归普通股股东享有的利润便大为增加。
如某公司以3亿元资金经营企业,每年获利6 000万元,设此项3亿元资本均属普通股股东,则其投资报酬率为20%,设此3亿元资金中,半数为10%债息的公司债和优先股,则付债息和优先股股利1 500万元后,普通股的投资报酬率即为30%。
(3)拓展杠杆原理扩展阅读:
杠杆股票可分为三种类型:
一、采用现金保证金交易购买的股票。
二、采用权益保证金方式购入的股票。
三、采用法定保证金方式购入的股票。影响保证金的因素很多,这是因为在交易过程中由于各种有价证券的性质不同,面额不等,供给与需求不同,所以,客户在交纳保证金时也要随因素的变动而变动。
4. 杠杆原理是什么
一、力学杠杆原理:
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·
L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
根据杠杆的平衡条件,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
二、金融杠杆原理
金融杠杆简单地说来就是一个乘号。使用这个工具,可以放大投资的结果,无论最终的结果是收益还是损失,都会以一个固定的比例增加,所以,在使用这个工具之前,投资者必须仔细分析投资项目中的收益预期,还有可能遭遇的风险,其实最安全的方法是将收益预期尽可能缩小,而风险预期尽可能扩大,这样做出的投资决策所得到的结果则必然落在您的预料之中。使用金融杠杆这个工具的时候,现金流的支出可能会增大,必须要考虑到这方面的事情,否则资金链一旦断裂,即使最后的结果可以是巨大的收益,您也必须要面对提前出局的下场。
5. 杠杆的原理是怎样的
原理简介
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F•
L1=W•L2。式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩)
*
受力
=
只点到施力点距离(力臂)
*
施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆
(力臂
>
力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机
(力矩
>
力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
6. 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。内要使杠容杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
7. 杠杆原理是什么
初中物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆。
8. 杠杆原理
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。 杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。 其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×l1=F2×l2这样就是一个杠杆。 动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力距);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。 两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。 古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。 虽然今天杠杆原理在生活中有着广泛的运用,可是当问到使用杠杆为什么会省力时,对此人们未必能够给出一个正确完满的答复。究其原因,这主要是今天的物理教材对此至今仍然没有给出一个完整的正确的答案的必然结果。 譬如,今天物理教材说‘杠杆平衡的条件:动力×动力臂=阻力×阻力臂,或写做F1×L1=F2×L2’。——这也就是说,在动力和阻力不变的前提下,使用杠杆省力的条件是动力臂长过阻力臂。可是当进一步问:动力臂长过阻力臂为什么就能够省力?!对此往往就没有了下文,或者简单的回答到说这是自然规律而已。 其实,杠杆省力的真正原因之一,是动力臂的重量大于阻力臂的重量的自然结果。举个例子,假定杠杆是一根钢棒,其粗细和长度单位重量是均匀的,其1米长度的重量为10公斤,那么,当动力臂长2米而阻力臂长0.1米时,动力臂自身的重量是20公斤,而阻力臂自身的重量的是1公斤,这时在动力臂的末端不需用力,就可以轻松的让阻力臂抬起20公斤以上的物体。这是显而易见的事情。 为了反复说明上述观点,再举个例子:一根粗细均匀长10米的木质杠杆,其自重10公斤,在其2、8分界处设立支点。当在动力臂末端挂上2公斤重物时,根据阿基米德平衡公式,这时要使杠杆平衡,在阻力臂末端应该挂上8公斤的重物;可是,由于动力臂自重8公斤,而阻力臂自重只有2公斤,因此可以肯定,这时杠杆并不能保持平衡:16+8≠16+2;或者按其重心计算:16+4≠16+1。——由此可见,阿基米德杠杆原理的理论基础——平衡公式的确是存在严重缺陷的是缺少实际意义的。 阿基米德之所以会产生上述错误,究其思想根源,在于他始终都把杠杆看作是‘无重量的杆’(《论平面图形的平衡》)。可是,杠杆要发挥作用就必须具有一定强度;而杠杆有一定强度就必然会有一定重量;而杠杆有一定重量平衡公式就必须重新修改。这是顺理成章的事情。大家知道,平衡公式正确与否从来都没有经过实践的严格检验(事实上也不可能检验),因此,如何完善杠杆原理——平衡公式,希望有兴趣和有条件的网友能够共同努力。
9. 关于杠杆原理的讲解,简介一下什么是杠杆原理,具体的
关于杠杆原理的讲解,简介一下什么是杠杆原理,具体的
1、什么是杠杆:能够绕固定点转动的硬棒(物体).
2、杠杆中的“三点、两力、两力臂”:
“三点”:支点——杠杆绕着转动的固定点.常用O表示.
动力作用点——动力在杠杆上的作用位置.
阻力作用点——阻力在杠杆上的作用位置.
“两力”:动力——使杠杆转动的力.常用F1表示.
阻力——阻碍杠杆转动的力.常用F2表示.
“两力臂”:动力臂——支点到动力作用线的距离.常用L1表示.
阻力臂——支点到阻力作用线的距离.常用L2表示.
(力的作用线——过力的作用点沿力的方向的直线.)
3、杠杆的平衡条件(原理):作用在杠杆上的力与它们的力臂成反比.即:
动力×动力臂=阻力×阻力臂
或
动力/阻力=阻力臂/动力臂
数学表达式:F1×L1=F2×L2
或
F1/F2=L2/L1
4、杠杆的分类:a、省力杠杆:在F1×L1=F2×L2中,L1>L2,则F1<F2;
b、费力杠杆:在F1×L1=F2×L2中,L1<L2,则F1>F2;
c、等臂杠杆:在F1×L1=F2×L2中,L1=L2,
则F1=F2.
10. 杠杆原理及公式
将杠杆原理看作以支点为中心的旋转运动,就比较容易理解了。动力点或专阻力点的移动距离属是由以支点为中心的圆的半径决定的。半径越长,这个点移动的距离就越长,因为这个点就得沿半径更长的圆移动了。
距离变化的同时,也伴随着力的增减。这是因为单纯的杠杆原理是通过以下公式成立的:作用于动力点的力×动力点移动的距离=作用于阻力点的力×阻力点移动的距离。(力×力作用的距离)在物理学中叫做“功”,即人做的功和物体被做的功是相等的(能量守恒定律)。
(10)拓展杠杆原理扩展阅读
在杠杆原理中,我们把杠杆固定的旋转点称为“支点”。要想举起重物,就要把支点置于尽量靠近物体的地方。
假设人施加力的点(动力点)与支点之间的距离达到支点与使物体移动的点(阻力点)之间距离的5倍。那么,要想撬起地球仪,只需要用地球仪1/5重量的力按压木板即可。
剪刀、起子、镊子、筷子、钳子、杆秤......这些工具都用到了“杠杆原理”。利用杠杆原理,我们可以用很小的力量撬起很重的物体,也可以把短距离移动放大为长距离移动。正因如此,杠杆原理在生活中的应用十分广泛。