Ⅰ 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。内要使杠容杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
Ⅱ 光杠杆测量原理是怎样的
光杠杆测量原理即光杠杆镜尺法测量微小伸长量原理.
1.拉伸法测量杨氏模量
◆原理:本实验采用光杠杆放大法进行测量。弹性杨氏模量是反映材料形变与内应力关系的物理量,实验表明,在弹性范围内,正应力(单位横截面积上垂直作用力与横截面积之比,)与线应变(物体的相对伸长)成正比,这个规律称为虎克定律。
2.测量圆环的转动惯量
◆结构:三线摆是上、下两个匀质圆盘,通过三条等长的摆线(摆线为不易拉伸的细线)连接而成。
◆原理:三线摆的摆动周期与摆盘的转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应地随之改变。这样,根据摆动周期、摆盘质量以及有关的参量,就能求出摆动系统的转动惯量。
Ⅲ 关于杠杆原理的讲解,简介一下什么是杠杆原理,具体的
关于杠杆原理的讲解,简介一下什么是杠杆原理,具体的
1、什么是杠杆:能够绕固定点转动的硬棒(物体).
2、杠杆中的“三点、两力、两力臂”:
“三点”:支点——杠杆绕着转动的固定点.常用O表示.
动力作用点——动力在杠杆上的作用位置.
阻力作用点——阻力在杠杆上的作用位置.
“两力”:动力——使杠杆转动的力.常用F1表示.
阻力——阻碍杠杆转动的力.常用F2表示.
“两力臂”:动力臂——支点到动力作用线的距离.常用L1表示.
阻力臂——支点到阻力作用线的距离.常用L2表示.
(力的作用线——过力的作用点沿力的方向的直线.)
3、杠杆的平衡条件(原理):作用在杠杆上的力与它们的力臂成反比.即:
动力×动力臂=阻力×阻力臂
或
动力/阻力=阻力臂/动力臂
数学表达式:F1×L1=F2×L2
或
F1/F2=L2/L1
4、杠杆的分类:a、省力杠杆:在F1×L1=F2×L2中,L1>L2,则F1<F2;
b、费力杠杆:在F1×L1=F2×L2中,L1<L2,则F1>F2;
c、等臂杠杆:在F1×L1=F2×L2中,L1=L2,
则F1=F2.
Ⅳ 利用光杠杆原理进行微小尺度测量的例子
可用来测量1m长的黄铜棒的线膨胀系数
Ⅳ 光杠杆原理是什么 - 百度知道
光杠杆测量原理即光杠杆镜尺法测量微小伸长量原理.
1.拉伸法测量杨氏模量 ◆原理:本实验采用光杠杆放大法进行测量。弹性杨氏模量是反映材料形变与内应力关系的物理量,实验表明,在弹性范围内,正应力(单位横截面积上垂直作用力与横截面积之比,)与线应变(物体的相对伸长)成正比,这个规律称为虎克定律。
2.测量圆环的转动惯量 ◆结构:三线摆是上、下两个匀质圆盘,通过三条等长的摆线(摆线为不易拉伸的细线)连接而成。 ◆原理:三线摆的摆动周期与摆盘的转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应地随之改变。这样,根据摆动周期、摆盘质量以及有关的参量,就能求出摆动系统的转动惯量。
Ⅵ 杠杆原理
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂) * 施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
Ⅶ 杠杆原理及公式
将杠杆原理看作以支点为中心的旋转运动,就比较容易理解了。动力点或专阻力点的移动距离属是由以支点为中心的圆的半径决定的。半径越长,这个点移动的距离就越长,因为这个点就得沿半径更长的圆移动了。
距离变化的同时,也伴随着力的增减。这是因为单纯的杠杆原理是通过以下公式成立的:作用于动力点的力×动力点移动的距离=作用于阻力点的力×阻力点移动的距离。(力×力作用的距离)在物理学中叫做“功”,即人做的功和物体被做的功是相等的(能量守恒定律)。
(7)杠杆原理探测微小力扩展阅读
在杠杆原理中,我们把杠杆固定的旋转点称为“支点”。要想举起重物,就要把支点置于尽量靠近物体的地方。
假设人施加力的点(动力点)与支点之间的距离达到支点与使物体移动的点(阻力点)之间距离的5倍。那么,要想撬起地球仪,只需要用地球仪1/5重量的力按压木板即可。
剪刀、起子、镊子、筷子、钳子、杆秤......这些工具都用到了“杠杆原理”。利用杠杆原理,我们可以用很小的力量撬起很重的物体,也可以把短距离移动放大为长距离移动。正因如此,杠杆原理在生活中的应用十分广泛。
Ⅷ 杠杆原理最大力和最小力是什么时候
古希腊学者来阿基米德总结出杠杆自的平衡条件:动力×动力臂=阻力×阻力臂.据此,他说出了“只要给我一个支点,我就可以移动地球”
的豪言壮语.地球的质量大约是6×1024
kg,人产生的推力约为588N,我们设想要撬起地球这个庞然大物,又找到了合适的支点,根据杠杆平衡条件,所用动力臂与阻力臂的比值为1023
:1,当然要找到这样长的杠杆确实非常困难,但这个想象中的实验包含了科学家对物理知识的深刻理解:只要动力臂与阻力臂的比值足够大,动力与阻力之比也就足够的小,这样使用杠杆也就最省力.
Ⅸ 光杠杆测微小长度的原理是什么
可以说是光沿直线传播,
这个实验的主要思想是使用光杠杆的放大原理,用光线的反射使一个微小的变化扩大
Ⅹ 杠杆的原理是怎样的
原理简介
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F•
L1=W•L2。式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩)
*
受力
=
只点到施力点距离(力臂)
*
施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆
(力臂
>
力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机
(力矩
>
力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。