❶ 省力杠杆定义
生活中的省力杠杆有瓶器、榨汁器、胡桃钳、撬棍、扳手、钳子、拔钉器、开瓶器、铁皮剪刀、钢丝钳、指甲剪、汽车方向盘等。省力杠杆是动力臂较长,动力较小,所以省力。但是通常省力杠杆省了力气会相应的费距离。
动力臂大于阻力臂,平衡时动力小于阻力。虽然省力,但是费了距离。也就是说当力臂的长度(以支点O为分界线)大于阻力臂的长度时,这便是省力杠杆。
设动力臂为L1,阻力臂为L2,当L1大于L2时为省力杠杆。F1*L1=F2*L2,L1>L2,F1<F2。
杠杆原理
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。
❷ 省力杠杆有什么例子 还有费力杠杆 和等臂杠杆
省力杠杆例子:坚果夹子,门,钉书机,跳水板,扳手;费力杠杆:镊子,手臂,鱼竿,皮划艇的桨,下颚;等臂杠杆:跷跷板、天平;具体分析如下:
初中物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆;
杠杆的分类:
一类:支点在动力点和阻力点的中间。称为第一类杠杆。动力臂与阻力臂长度一致,所以这类杠杆是等臂杠杆。例:跷跷板、天平等;
二类:阻力点在动力点和支点中间。称为第二类杠杆。由于动力臂总是大于阻力臂,所以它是省力杠杆。例:坚果夹子,门,钉书机,跳水板,扳手;
三类:动力点在支点和阻力点之间。称为第三类杠杆。特点是动力臂比阻力臂短,所以这类杠杆是费力杠杆,然而能够节省距离。例:镊子,手臂,鱼竿,皮划艇的桨,下颚;
所以可以看出,省力杠杆、费力杠杆、等臂杠杆的例子。
(2)杠杆省力扩展阅读:
阿基米德发现了杠杆原理,他的著名的一句话是:“给我一个支点,我可以翘起整个地球”。杠杆静止不动以及匀速转动的时候都叫做杠杆的平衡;
我们日常生活中每天都在用到杠杆原理,比如剪纸时用的剪刀,钓鱼时用的鱼竿,杠杆的应用极大地方便了人类的生活,推动了科学技术的进步,具有重要的意义;
杠杆的作用是省力或省距离。筷子的应用就是很好的例子:两根筷子交叉处是支点,筷子是费力杠杆,它的阻力臂大于动力臂,虽然费力但节省了距离。
参考资料来源:网络-杠杆
❸ 省力的杠杆类工具和费力的杠杆类工具有哪些
费力杠杆有:理发剪、人的手臂、钓鱼竿、镊子……省力杠杆有:动滑轮、扳手、独轮车、开瓶器……既不省力也不费力的杠杆有:天平横梁、定滑轮……
关注我,给你再答两题。
❹ 省力杠杆和费力杠杆的区别是什么
一、性质不同
1、省力杠杆,顾名思义,其动力臂较长,动力较小,所以省力。
2、杠杆平衡条件为动力乘动力臂等于阻力乘阻力臂,那么在杠杆平衡的条件下,动力(F1)大于阻力(F2),动力臂(L1)小于阻力臂(L2)时,杠杆为费力杠杆。
二、公式不同
1、公式F1L1=F2L2可得,力臂越长力就越小。
2、公式:L1×F1=L2×F2时,L1<L2,则F1>F2。
三、生活中例子不同
1、省力杠杆:撬棍、扳手、钳子、拔钉器、开瓶器、铁皮剪刀、钢丝钳、指甲剪、汽车方向盘等。
2、费力杠杆:裁缝剪刀、筷子、手臂、扇子、响板、镊子、汤勺、铁闸门、起重机、鱼竿、缝纫机脚踏板、划桨、理发师用的剪刀、晾衣。
❺ 使用杠杆一定能省力吗
是比较省力的一种使用方式,这是一种比较普遍物理常识和原理
❻ 怎样使用杠杆是最省力!!
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。 杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。 其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂) * 施力,这样就是一个杠杆。 杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。 两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。 古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。 杠杆分类 [编辑本段] 杠杆可分为省力杠杆、费力杠杆和等臂杠杆。这几类杠杆有如下特征: 1.省力杠杆:L1>L2, F1
❼ 省力杠杆有哪些
相信很多人都听过阿基米德的一句名言——“给我一个支点,我可以撬起整个地球”。那么我们思考,他是想怎样把地球翘起来呢?这就是我们这节要讲解的内容——杠杆。
【杠杆的概念】
杠杆的定义: 一根硬棒,在力的作用下能够绕着固定点O转动,这根硬棒就是杠杆。
【杠杆的五要素】
1、支点: 2、动力; 3、阻力; 4、动力臂; 5、阻力臂
下面具体解释什么是五要素
(1)支点:杠杆可以绕其旋转的点O;
(2)动力:使杠杆转动的力F1;
(3)阻力:阻碍杠杆转动的力F2;
(4)动力臂:从支点O到动力F1作用线的距离L1;
(5)阻力臂:从支点O到动力F2作用线的距离L2;
如上图所示,力F为动力,而物体的重力为阻力,通过实验可知杠杆处于平衡态时,其动力F1、动力臂L1和阻力F2、阻力臂L2满足:F1L1=F2L2;
【杠杆平衡】
当动力和阻力对杠杆的转动效果相互抵消时,杠杆将处于平衡状态,这种状态叫做杠杆平衡,但是杠杆平衡并不是力的平衡。
杠杆静止不动或匀速转动都叫做杠杆平衡。
【等臂杠杆】
由杠杆平衡条件F1L1=F2L2可知,当L1=L2时,有F1=F2;
此时动力与阻力的大小是相等的。这样的杠杆我们叫做等臂杠杆。
与省力杠杆和费力杠杆相比,等臂杠杆不省力,也不省距离。
常见的省力杠杆有:天平与定滑轮。
【省力杠杆】
如果某个杠杆,其动力臂比阻力臂大,这个杠杆就是省力杠杆。
由杠杆平衡条件F1L1=F2L2可知:
F1=F2L2/L1
显然,动力臂比阻力臂大,即L1>L2时,F1>F2
此时动力比阻力要小。
【费力杠杆】
如果动力臂比阻力臂小,那么该杠杆就是费力杠杆。这也可以利用数学关系来证明。
由杠杆平衡条件F1L1=F2L2可知:
F1=F2L2/L1
显然,动力臂比阻力臂小,即L1<L2时,F1<F2
【杠杆的应用】
生活中,我们随处可见利用杠杆原理的工具,例如下图
【等臂杠杆】
天平就是利用等臂杠杆的原理,即动力臂等于阻力臂,来实现测量物体质量的。因为动力臂等于阻力臂,所有左右两个托盘内的重力相等,根据重力与质量的关系(G=mg),被测的质量就等于砝码的质量加上游码的质量了
【省力杠杆】
利用撬棍来翘石头,就是典型的省力杠杆。从本质上来看,我们希望用较小的力,来把很重的石头翘起来。
虽然省力杠杆省了力,不过也费了距离.
【费力杠杆】
利用鱼竿来钓鱼,就是利用的费力杠杆
【练习】
如图所示,一轻质杠杆的支点在O点,左边A处挂两个钩码,右边B处挂上一物体后,杠杆在水平位置上平衡.如果在A的下面再挂一钩码,则必须把物体移挂在C处才能使杠杆水平平衡.若BC=5cm,AO=15cm,每个钩码的质量m都为50g,求OB的长度和物体的质量M.
【解答】解:
(1)当左边A处挂两个钩码,右边B处挂上一物体后:
∵杠杆水平平衡,
∴2mg×OA=Mg×OB,
即:100g×15cm=M×OB,﹣﹣﹣﹣﹣①
(2)当在A的下面再挂一钩码,把物体移挂在C处,
∵杠杆水平平衡,
∴3mg×OA=Mg×OC=Mg×(OB+BC),
150g×15cm=M×(OB+5cm)﹣﹣﹣﹣﹣②
(3)由①②联立方程组解得:
OB=10cm,M=150g.
答:OB的长度为10cm、物体的质量为150g.
在分析杠杆平衡问题时,不能仅仅以力的大小来判断,一定要从基本知识考虑,做到解决问题有根有据,切忌凭主观感觉来解题,要对杠杆平衡条件熟悉掌握和运用。
❽ 省力杠杆有什么例子 还有费力杠杆 和等臂杠杆
省力杠杆比如扳手,动滑轮等,费力杠杆比如镊子等,等臂杠杆比如天平、定滑轮等。
❾ 杠杆原理可以省力多少
根据支点位置不同,质量不同,省力大小也是不同的。
动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
❿ 杠杆省力的原理
杠杆省力原理:动力×动力臂=阻力×阻力臂,当阻力和阻力臂一定是,动力臂越长,那版么动力权就可以越小,这样就更省力。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。
因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂)。
(10)杠杆省力扩展阅读:
人体内杠杆
几乎每一台机器中都少不了杠杆,就是在人体中也有许许多多的杠杆在起作用。拿起一件东西,弯一下腰,甚至翘一下脚尖都是人体的杠杆在起作用,了解了人体的杠杆不仅可以增长物理知识,还能学会许多生理知识。
点一下头或抬一下头是靠杠杆的作用,杠杆的支点在脊柱之顶,支点前后各有肌肉,头颅的重量是阻力。