Ⅰ 杠杆的原理的原理是什么
要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。专即:动力×动力臂=阻力属×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。因此要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。
当杠杆的动力点到支点的距离大于阻力点到支点的距离时是省力杠杆,反之则是费力杠杆。杠杆可分为省力杠杆、费力杠杆和等臂杠杆。
杠杆原理的应用:
1、省力杠杆:L1>L2, F1<f2 ,省力、费距离。如拔钉子用的羊角锤、铡刀,瓶盖扳子等。
2、费力杠杆: L1<L2, F1>F2,费力、省距离。如钓鱼竿、镊子等。
3、等臂杠杆: L1=L2, F1=F2,既不省力也不费力,又不多移动距离。如天平、定滑轮等。
Ⅱ 杠杆工具的工作原理是什么
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍
Ⅲ 杠杆原理是什么
一、力学杠杆原理:
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·
L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
根据杠杆的平衡条件,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
二、金融杠杆原理
金融杠杆简单地说来就是一个乘号。使用这个工具,可以放大投资的结果,无论最终的结果是收益还是损失,都会以一个固定的比例增加,所以,在使用这个工具之前,投资者必须仔细分析投资项目中的收益预期,还有可能遭遇的风险,其实最安全的方法是将收益预期尽可能缩小,而风险预期尽可能扩大,这样做出的投资决策所得到的结果则必然落在您的预料之中。使用金融杠杆这个工具的时候,现金流的支出可能会增大,必须要考虑到这方面的事情,否则资金链一旦断裂,即使最后的结果可以是巨大的收益,您也必须要面对提前出局的下场。
Ⅳ 杠杆的原理是什么
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
Ⅳ 杠杆原理是什么
初中物理学中把一根在力的作用下可绕固定点转动的硬棒叫做杠杆。
Ⅵ 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。内要使杠容杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
Ⅶ 杠杆原理 的具体内容是什么
杠杆力学原理是力平衡的普遍原理!
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比!
杠杆原理又称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力和阻力)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F• L1=W•L2。式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的!
Ⅷ 杠杆的原理是什么
原理简介
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F•
L1=W•L2。式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩)
*
受力
=
只点到施力点距离(力臂)
*
施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆
(力臂
>
力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机
(力矩
>
力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
Ⅸ 关于杠杆原理的讲解,越详细越好!!
杠杆原理
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用力点,这样,你看出来了吧?(图1)中,在杠杆右边向下用力,就可以把左方的重物抬起来了;在(图2)中,在杠杆右边向上用力,也能把重物抬起来;在(图3)中,支点在左边、重物在右边,力点在中间,向上用力,也能把重物抬起来。
你注意到了吗?在(图1)中,支点在杠杆中间,物理学里,把这类杠杆叫做第一种杠杆;(图2)是重点在中间,叫做第二种杠杆;(图3)是力点在中间,叫做第三种杠杆。
第一种杠杆例如:剪刀、钉鎚、拔钉器……这种杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离(图1):力点离支点愈远则愈省力,愈近就愈费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠杆的力点一定比重点距离支点远,所以永远是省力的。
第三种杠杆例如:镊子、烤肉夹子、筷子……
这种杠杆的力点一定比重点距离支点近,所以永远是费力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)来剪纸板,花剪较省力但是费时;而洋裁剪则费力但是省时。