⑴ 杨氏模量光杠杆法中各长度量用不同的仪器来测量,是怎样考虑的
杨氏模量光杠杆法中各长度量用不同的仪器来测量,充分利用实验数据,避免了数据处理上引入的误差。
杨氏模量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨所得到的结果而命名。
根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。
(1)光杠杆发扩展阅读
测试方法
杨氏模量测试方法一般有静态法和动态法。动态法有脉冲激振法、声频共振法、声速法等。
脉冲激振法:通过合适的外力给定试样脉冲激振信号,当激振信号中的某一频率与试样的固有频率相一致时,产生共振,此时振幅最大,延时最长,这个波通过测试探针或测量话筒的传递转换成电讯号送入仪器,测出试样的固有频率,由公式计算得出杨氏模量E。
特点:国际通用的一种常温测试方法;信号激发、接收结构简单,测试测试准确;准确、直观。
声频共振法:指由声频发生器发送声频电信号,由换能器转换为振动信号驱动试样,再由换能器接收并转换为电信号,分析此信号与发生器信号在示波器上形成的图形,得出试样的固有频率f,由公式E=C1·w·f得出试样的杨氏模量。
特点:声频发生器、放大器等组成激发器;换能器接收信号,示波器显示信号;李萨如图形判断试样固有频率。
⑵ 如何用光杠杆法测量一块薄板的厚度
将板放在一个平面上,在上面放一个三脚支架的镜子,两脚在板外,一个支脚在板上。在平台的适当距离L处放置一个标尺和一个带刻度的望远镜,调节镜子使望远镜能通过镜子看到标尺,读出刻线处对应的标尺读数a1,再将薄板移去,再观测标尺的读数a2。根据a1,a2,L可算出薄板厚度。
⑶ 用光杠杆法测钢的杨氏模量时钢丝长度怎么测
光杠杆两个前足尖放在弹性模量测定仪的固定平台上,而后足尖放在待测金属丝的测量端面上。金属丝受力产生微小伸长时,光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。
(3)光杠杆发扩展阅读
光杠杆法,在长度或位置差别甚小的测量中,这是一个简单有效的方法。它是一块安装在三个支点上的平面镜,F1和F2为前面的支点,R是后面的支点。
镜的偏转面所在的平面平行于F1、F2的连线,R安装在待测量的位置变化的物体上,F1和F2固定于基座,使平面镜能绕F1F2轴转动,L是望远镜,S是标尺(它上面的字是反的),当光线经M反射后,标尺S上的刻度可通过望远镜观测。
根据不同的受力情况,分别有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。
⑷ 光杠杆原理是什么 - 百度知道
光杠杆测量原理即光杠杆镜尺法测量微小伸长量原理.
1.拉伸法测量杨氏模量 ◆原理:本实验采用光杠杆放大法进行测量。弹性杨氏模量是反映材料形变与内应力关系的物理量,实验表明,在弹性范围内,正应力(单位横截面积上垂直作用力与横截面积之比,)与线应变(物体的相对伸长)成正比,这个规律称为虎克定律。
2.测量圆环的转动惯量 ◆结构:三线摆是上、下两个匀质圆盘,通过三条等长的摆线(摆线为不易拉伸的细线)连接而成。 ◆原理:三线摆的摆动周期与摆盘的转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应地随之改变。这样,根据摆动周期、摆盘质量以及有关的参量,就能求出摆动系统的转动惯量。
⑸ 光杠杆法和差动变压器式位移传感器各有什么优缺点
LVDT差动变压器式LVDT位移传感器特点:一、无摩擦测量LVDT的铁芯和线圈之间无接触不存在电器上的机械摩擦,也就是说LVDT是没有摩擦的部件。二、无限的机械寿命由于LVDT的线圈及其铁芯之间没有机械摩擦和接触,因此不会产生任何磨损。这样,
⑹ 用拉伸法测量金属丝的杨氏模量中,光杠杆镜尺法有何优点
1、可以简单准确地将微小形变放大;
2、测量,读数简单;
3、通常用光学方法测形变,都是将微小形变放大;
光杠杆镜尺法是一种利用光学放大方法测量微小位移的装置。由于,在拉伸法测量杨氏模量的实验中,金属丝的伸长量很难测量,所以必须使用光杠杆放大后,才能够测量出来。用光杠杆镜尺法相对来说,测量方法和仪器设备都很简单,好操作。
(6)光杠杆发扩展阅读:
拉伸试验中得到的屈服极限бS和强度极限бb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑型变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
⑺ 杨氏弹性模量实验中,为什么光杠杆系统可以测量出长度的微小变化其放大倍数与哪些量有关
光杠杆法是利用当钢丝伸长微小的距离,反射镜会偏转一个微小的角度,使得镜子里标尺的刻度像会变化一定刻度,通过刻度变化可以计算出钢丝长度变化。放大倍数与镜面到尺面距离,镜子支架长度有关。
光杠杆放大法是一种利用光学放大方法测量微小位移的装置。由于在拉伸法测量杨氏模量的实验中,金属丝的伸长量很难测量,所以必须使用光杠杆放大后,才能够测量出来。
(7)光杠杆发扩展阅读:
注意事项:
在外力的F的拉伸下,钢丝的伸长量DL是很小的量。用一般的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中成像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为 。当钢丝下降DL时,平面镜将转动q角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。
⑻ 用光杠杆法测量线膨胀量时,改变那些量可以增大光杠杆的放大倍数
用光杠杆测量线膨胀系数时,通过以下两种方法可以增加光杆的放大倍数:
1.
增大标尺距离d
2.
减小光杠杆前后脚的垂直距离b
【光杠杆的放大倍数为2d/b】
⑼ 光杠杆法怎么测量杨氏模量
如下:
如果金属丝绷紧拉直,那么拉伸实验时,金属丝的伸长量和拉力成正比。画出来的“力-伸长量”图像为斜直线,由该直线的斜率即可以求得杨氏模量。
如果金属丝是弯曲的,开始拉伸时,因为先要把金属丝由弯拉直,所以“力-伸长量”图像是一条曲线,开始只有伸长量增加,力不增加,金属丝绷紧后,图像才变为斜直线。
所以,对实验的影响:拉伸曲线开始不为斜直线,求杨氏模量时必须把前面的曲线段舍弃。
相关介绍:
杨氏模量(Young's molus)是描述固体材料抵抗形变能力的物理量,也叫拉伸模量(tensile molus)。1807年由英国物理学家托马斯·杨所提出。
当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。应力与应变的比叫弹性模量。ΔL是微小变化量。
杨氏模量(Young's molus),又称拉伸模量(tensile molus)是弹性模量(elastic molus or molus of elasticity)中最常见的一种。杨氏模量衡量的是一个各向同性弹性体的刚度(stiffness), 定义为在胡克定律适用的范围内,单轴应力和单轴形变之间的比。
与弹性模量是包含关系,除了杨氏模量以外,弹性模量还包括体积模量(bulk molus)和剪切模量(shear molus)等。Young's molus E, shear molus G, bulk molus K, 和 Poisson's ratio ν 之间可以进行换算,公式为:E=2G(1+v)=3K(1-2v)。
⑽ 能否用光杠杆法测引力常量G
①这是个人观点:可以用单摆的方式吧,那里可以做到的
。你可以固定在上方的一点,干可以绕该点无磨擦转动,让其转动测出周期和摆长,就可以用公计算出来了啊。这是个理论上的方法,实际上普通实验室不可能实现无摩擦。②以下是卡文迪许的实验方法:卡文迪许是用扭秤测出的。
扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。现在在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。怎样才能把这个角度测出来呢?卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出引力常量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。