导航:首页 > 汇率佣金 > 多元线性回归中的杠杆值

多元线性回归中的杠杆值

发布时间:2022-09-24 13:38:45

① SPSS 多元线性回归结果中,系数模型下的1,B,t,Sig.分别什么意思。在线等!!急求高手解答!!

SPSS 多元线性回归结果中,结果表格列出了自变量的显著性检验结果,结果输出表格中列出了回归模型的偏回归系数(B)及其标准误(Std.Error),标准化偏回归系数(Beta),回归系数检验的t统计量及其P值(Sig.)。

系数模型下的1表示模型的序号。

1、T表示使用单样本T检验的T值。

2、sig表示T检验的显著性检验P值,小于0.05的则说明自变量对因变量具有显著影响。

3、B表示各个自变量在回归方程中的偏回归系数,负值表示自变量对因变量有显著的负向影响。

(1)多元线性回归中的杠杆值扩展阅读:

由于每个自变量的量纲和取值范围不同,基于偏回归系数B并不能反映各个自变量对因变量影响程度的大小。标准化偏回归系数其意义在于通过对偏回归系数进行标准化,从而可以比较不同自变量对因变量的作用大小。标准化偏回归系数数值越大表示对自变量的影响更大。

② 多元线性回归。spss应用。如何输出库克距离、杠杆值等统计量。

analyz--general linear model--multivariate--save--diagnostic下有cook's distance & leverage values

③ 多元线性回归中,如何比较各个自变量对因变量的贡献率大小

我的理解是各个自变量对因变量的贡献率=各个自变量的标准化系数/所有自变量标准化系数绝对值之和。其中,贡献率可正可负。

SPSS/PC+的推出,极大地扩充了它的应用范围,使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。

已经在国内逐渐流行起来。它使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要掌握一定的Windows操作技能,粗通统计分析原理,就可以使用该软件为特定的科研工作服务。

相关的软件:

SPSS(Statistical Package for the Social Science)--社会科学统计软件包是世界著名的统计分析软件之一。20世纪60年代末,美国斯坦福大学的三位研究生研制开发了最早的统计分析软件SPSS,同时成立了SPSS公司,并于1975年在芝加哥组建了SPSS总部。

20世纪80年代以前,SPSS统计软件主要应用于企事业单位。1984年SPSS总部首先推出了世界第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,从而确立了个人用户市场第一的地位。同时SPSS公司推行本土化策略,已推出9个语种版本。

④ 简述多元线性回归分析的步骤是什么

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。

1、普通最小二乘法(Ordinary Least Square, OLS)

普通最小二乘法通过最小化误差的平方和寻找最佳函数。

多元线性回归

其中,Ω是残差项的协方差矩阵。

⑤ spss:得到一个多元线性回归模型之后,如何比较预测值和真实值如何判断模型是否有预测能力

1、打开SPSS软件后点击右上角的【打开文件按钮】打开你需要分析的数据文件。

注意事项:

SPSS注意事项:

1,数据编辑器、语法编辑器、输出查看器、脚本编辑器都可以同时打开多个。

2,关闭所有的输出查看器后,并不退出SPSS系统。数据编辑器都退出后将关闭SPSS系统。关闭所有的数据文件时并不一定退出SPSS系统。说明:仅新建一个数据文件,并没有保存,既没有生成数据文件。此时关闭其它所有已保存的数据文件时,不退出SPSS系统。

3,可以在不同的数据编辑器窗口打开同一个数据文件。对话框中提示“恢复为已保存”或“在新窗口中打开”选项。

⑥ SPSS线性回归结果解读以及杠杆效应展示

先看 R方=0.984 说明模型的拟合效果不错,根据系数表 得到方程为
人均卫生费用=医疗保障支出*1.441+388.509

⑦ 多元线性回归分析中,为什么要对可决系数加以修正

随着模型中解释变量的增加,多重可决系数R的平方的值会变大当解释变量相同而解释变量个数不同时运用多重可决系数去比较两个模型拟合程度会带来缺陷,因为可决系数只考虑变差,没有考虑自由度。

F检验与可决系数有密切的联系,一般来说,模型对观测值的拟合程度越高,模型总体线性关系的显著性就越强。

随着修正可决系数的增加,F统计量的值不断增加。对方程联合显著性检验的F检验,实际上也是对R平方的显著性检验。

(7)多元线性回归中的杠杆值扩展阅读:

多元线性回归分析的优点:

1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。

2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。

3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。

⑧ 简述一下Logistic回归分析指标重要程度的主要过程

Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。
1. 应用范围:
① 适用于流行病学资料的危险因素分析
② 实验室中药物的剂量-反应关系
③ 临床试验评价
④ 疾病的预后因素分析
2. Logistic回归的分类:
① 按因变量的资料类型分:
二分类
多分类
其中二分较为常用
② 按研究方法分:
条 件Logistic回归
非条件Logistic回归
两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍研究。
3.Logistic回归的应用条件是:
① 独立性。各观测对象间是相互独立的;
② LogitP与自变量是线性关系;
③ 样本量。经验值是病例对照各50例以上或为自变量的5-10倍(以10倍为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多;
④ 当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观察时间的影响(建议用Poisson回归)。
4. 拟和logistic回归方程的步骤:
① 对每一个变量进行量化,并进行单因素分析;
② 数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等级资料。可采用的方法有依据经验进行离散,或是按照四分、五分位数法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离散变量。
③ 对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量变换;
④ 在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变量。可以采用双向筛选技术:a进入变量的筛选用score统计量或G统计量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔除。这样,选入和剔除反复循环,直至无变量选入,也无变量删除为止,选入或剔除的显著界值的确定要依具体的问题和变量的多寡而定,一般地,当纳入模型的变量偏多,可提高选入界值或降低剔除标准,反之,则降低选入界值、提高删除标准。但筛选标准的不同会影响分析结果,这在与他人结果比较时应当注意。
⑤ 在多因素筛选模型的基础上,考虑有无必要纳入变量的交互作用项;两变量间的交互作用为一级交互作用,可推广到二级或多级交互作用,但在实际应用中,各变量最好相互独立(也是模型本身的要求),不必研究交互作用,最多是研究少量的一级交互作用。
⑥ 对专业上认为重要但未选入回归方程的要查明原因。
5. 回归方程拟合优劣的判断(为线性回归方程判断依据,可用于logistic回归分析)
① 决定系数(R2)和校正决定系数( ),可以用来评价回归方程的优劣。R2随着自变量个数的增加而增加,所以需要校正;校正决定系数( )越大,方程越优。但亦有研究指出R2是多元线性回归中经常用到的一个指标,表示的是因变量的变动中由模型中自变量所解释的百分比,并不涉及预测值与观测值之间差别的问题,因此在logistic回归中不适合。
② Cp选择法:选择Cp最接近p或p+1的方程(不同学者解释不同)。Cp无法用SPSS直接计算,可能需要手工。1964年CL Mallows提出:

Cp接近(p+1)的模型为最佳,其中p为方程中自变量的个数,m为自变量总个数。
③ AIC准则:1973年由日本学者赤池提出AIC计算准则,AIC越小拟合的方程越好。

在logistic回归中,评价模型拟合优度的指标主要有Pearson χ2、偏差(deviance)、Hosmer- Lemeshow (HL)指标、Akaike信息准则(AIC)、SC指标等。Pearson χ2、偏差(deviance)主要用于自变量不多且为分类变量的情况,当自变量增多且含有连续型变量时,用HL指标则更为恰当。Pearson χ2、偏差(deviance)、Hosmer- Lemeshow (HL)指标值均服从χ2分布,χ2检验无统计学意义(P>0.05)表示模型拟合的较好,χ2检验有统计学意义(P≤0.05)则表示模型拟合的较差。AIC和SC指标还可用于比较模型的优劣,当拟合多个模型时,可以将不同模型按其AIC和SC指标值排序,AIC和SC值较小者一般认为拟合得更好。
6. 拟合方程的注意事项:
① 进行方程拟合对自变量筛选采用逐步选择法[前进法(forward)、后退法(backward)、逐步回归法(stepwise)]时,引入变量的检验水准要小于或等于剔除变量的检验水准;
② 小样本检验水准α定为0.10或0.15,大样本把α定为0.05。值越小说明自变量选取的标准越严;
③ 在逐步回归的时可根据需要放宽或限制进入方程的标准,或硬性将最感兴趣的研究变量选入方程;
④ 强影响点记录的选择:从理论上讲,每一个样本点对回归模型的影响应该是同等的,实际并非如此。有些样本点(记录)对回归模型影响很大。对由过失或错误造成的点应删去,没有错误的强影响点可能和自变量与应变量的相关有关,不可轻易删除。
⑤ 多重共线性的诊断(SPSS中的指标):a容许度:越近似于0,共线性越强;b特征根:越近似于0,共线性越强;c条件指数:越大,共线性越强;
⑥ 异常点的检查:主要包括特异点(outher)、高杠杆点(high leverage points)以及强影响点(influential points)。特异点是指残差较其他各点大得多的点;高杠杆点是指距离其他样品较远的点;强影响点是指对模型有较大影响的点,模型中包含该点与不包含该点会使求得的回归系数相差很大。单独的特异点或高杠杆点不一定会影响回归系数的估计,但如果既是特异点又是高杠杆点则很可能是一个影响回归方程的“有害”点。对特异点、高杠杆点、强影响点诊断的指标有Pearson残差、Deviance残差、杠杆度统计量H(hat matrix diagnosis)、Cook 距离、DFBETA、Score检验统计量等。这五个指标中,Pearson残差、Deviance残差可用来检查特异点,如果某观测值的残差值>2,则可认为是一个特异点。杠杆度统计量H可用来发现高杠杆点, H值大的样品说明距离其他样品较远,可认为是一个高杠杆点。Cook 距离、DFBETA指标可用来度量特异点或高杠杆点对回归模型的影响程度。Cook距离是标准化残差和杠杆度两者的合成指标,其值越大,表明所对应的观测值的影响越大。DFBETA指标值反映了某个样品被删除后logistic回归系数的变化,变化越大(即DFBETA指标值越大),表明该观测值的影响越大。如果模型中检查出有特异点、高杠杆点或强影响点,首先应根据专业知识、数据收集的情况,分析其产生原因后酌情处理。如来自测量或记录错误,应剔除或校正,否则处置就必须持慎重态度,考虑是否采用新的模型,而不能只是简单地删除就算完事。因为在许多场合,异常点的出现恰好是我们探测某些事先不清楚的或许更为重要因素的线索。
7. 回归系数符号反常与主要变量选不进方程的原因:
① 存在多元共线性;
② 有重要影响的因素未包括在内;
③ 某些变量个体间的差异很大;
④ 样本内突出点上数据误差大;
⑤ 变量的变化范围较小;
⑥ 样本数太少。
8. 参数意义
① Logistic回归中的常数项(b0)表示,在不接触任何潜在危险/保护因素条件下,效应指标发生与不发生事件的概率之比的对数值。
② Logistic回归中的回归系数(bi)表示,其它所有自变量固定不变,某一因素改变一个单位时,效应指标发生与不发生事件的概率之比的对数变化值,即OR或RR的对数值。需要指出的是,回归系数β的大小并不反映变量对疾病发生的重要性,那么哪种因素对模型贡献最大即与疾病
追问:
联系最强呢? (InL(t-1)-InL(t))三种方法结果基本一致。
③ 存在因素间交互作用时,Logistic回归系数的解释变得更为复杂,应特别小心。
④ 模型估计出OR,当发病率较低时,OR≈RR,因此发病率高的疾病资料不适合使用该模型。另外,Logistic模型不能利用随访研究中的时间信息,不考虑发病时间上的差异,因而只适于随访期较短的资料,否则随着随访期的延长,回归系数变得不稳定,标准误增加。
9. 统计软件
能够进行logistic回归分析的软件非常多,常用的有SPSS、SAS、Stata、EGRET (Epidemiological Graphics Estimation and Testing Package)等。

⑨ 多元线性回归模型

多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。

设变量Y与变量X1,X2,…,Xm存在着线性回归关系,它的n个样本观测值为Yj,Xj1,Xj2,…Xjm�(j=1,2,n),于是多元线性回归的数学模型可以写为:

可采用最小二乘法对上式中的待估回归系数β0,β1,…,βm进行估计,求得β值后,即可利用多元线性回归模型进行预测了。

计算了多元线性回归方程之后,为了将它用于解决实际预测问题,还必须进行数学检验。多元线性回归分析的数学检验,包括回归方程和回归系数的显著性检验。

回归方程的显著性检验,采用统计量:

式中: ,为回归平方和,其自由度为m; ,为剩余平方和,其自由度为(n-m-1)。

利用上式计算出F值后,再利用F分布表进行检验。给定显著性水平α,在F分布表中查出自由度为m和(n-m-1)的值Fα,如果F≥Fα,则说明Y与X1,X2,…,Xm的线性相关密切;反之,则说明两者线性关系不密切。

回归系数的显著性检验,采用统计量:

式中,Cii为相关矩阵C=A-1的对角线上的元素。

对于给定的置信水平α,查F分布表得Fα(n-m-1),若计算值Fi≥Fα,则拒绝原假设,即认为Xi是重要变量,反之,则认为Xi变量可以剔除。

多元线性回归模型的精度,可以利用剩余标准差

来衡量。S越小,则用回归方程预测Y越精确;反之亦然。

⑩ spss 多元线性回归分析 帮忙分析一下下图,F、P、t、p和r方各代表什么谢谢~

F是对回归模型整体的方差检验,所以对应下面的p就是判断F检验是否显著的标准,你的p说明回归模型显著。

R方和调整的R方是对模型拟合效果的阐述,以调整后的R方更准确一些,也就是自变量对因变量的解释率为27.8%。

t就是对每个自变量是否有显著作用的检验,具体是否显著 仍然看后面的p值,若p值<0.05,说明该自变量的影响显著。

(10)多元线性回归中的杠杆值扩展阅读

多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。

但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度。

更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能。

具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数。

SPSS for Windows是一个组合式软件包,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。

SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程。

比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种图形。

参考资料:多元线性回归_网络

阅读全文

与多元线性回归中的杠杆值相关的资料

热点内容
融资证券化 浏览:737
园城黄金最新消息 浏览:243
中融国际金融有限公司法人 浏览:605
口腔方面的上市公司 浏览:483
个相关股票 浏览:970
秀强员工融资 浏览:797
青岛港融资铜消失 浏览:702
审批贸易金融公司 浏览:380
从哪里可以看到永安持仓 浏览:164
黄金可经济采矿的品位 浏览:498
期货基础知识期货法律法规pdf 浏览:516
江苏阳光集团宿舍 浏览:81
宁波金融服务办 浏览:138
纽约股票熔断 浏览:471
佣金宝开户后账号知道怎么登陆 浏览:245
金融机构存贷款利率 浏览:90
安信信托2018年2季度业绩 浏览:373
90年代黄金差美元强 浏览:927
大有期货董事长 浏览:435
证券业2016年发展报告 浏览:230