㈠ 求杠杆原理的实际运用
恩看你想问什么!
关于杠杆的运用是:剪刀(省力费力都有),启瓶器(省力),撬棒(省力),天平(平衡),跷跷板(平衡),还有人的骨骼 ,羊角锤(省力) 镊子(费力),钓鱼竿(费力)指甲刀,(有一个省力和两个费力杠杆)农村的提水机(省力)……………………多得列举不完。
关于杠杆的理论就是
杠杆目录
什么是杠杆
杠杆的定义
杠杆的性质
杠杆平衡条件
生活中的杠杆
投资中的杠杆
[编辑本段]什么是杠杆
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替;似图形的重心以相似的方式分布……正是从这些公理出发,在"重心"理论的基础上,阿基米德又发现了杠杆原理,即"二重物平衡时,它们离支点的距离与重量成反比。"
阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅船顺利下水。在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在我国历史上也早有关于杠杆的记载。战国时代的墨家曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的。
[编辑本段]杠杆的定义
一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就是杠杆(lever).
跷跷板、剪刀、扳子、撬棒等,都是杠杆。
[编辑本段]杠杆的性质
杠杆绕着转动的支撑点叫做支点
The lever is called a fulcrum being winding the center of resistance rotating
使杠杆转动的力叫做动力
Make the force that the lever turns be called driving force
阻碍杠杆转动的力叫做阻力
Hinder the force that the lever turns from being called resistance
当动力和阻力对杠杆的转动效果相互抵消时,杠杆将处于平衡状态,这种状态叫做杠杆平衡
Think that driving force composes in reply resistance when effect cancels out each other to the lever rotating , the lever will be called lever balance in equilibrium state , this state
杠杆平衡时保持在水平位置静止或匀速转动。
通过力的作用点沿力的方向的直线叫做力的作用线
The straight line passing the force effect point direction along the force is called the force effect line
Gleam of distance is called an arm of force from fulcrum to the force effect
从支点O到动力F1的作用线的垂直距离L1叫做动力臂
L1 is called a power arm from fulcrum O to driving force F1 effect line distance
从支点O到阻力F2的作用线的垂直距离L2叫做阻力臂
L2 is called the resistance arm from fulcrum O to resistance F2 effect line distance
[编辑本段]杠杆平衡条件
动力臂×动力=阻力臂×阻力,即L1F1=L2F2,由此可以演变为F2/F1=L1/L2
Power arm X driving force = resistance arm X resistance , namely L1F1 = L2F2, can develop into F2/F1 = L1/L2 from this
杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关。
The lever balance is connected with driving force and resistance not only , direction is connected with force effect point and the force effect.
[编辑本段]生活中的杠杆
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用,这样,你看出来了吧?在杠杆右边向下杠杆是等臂杠杆;第二种是重点在中间,动力臂大于阻力臂,是省力杠杆;第三种是力点在中间,动力臂小于阻,是费力杠杆。
第一种杠杆例如:剪刀、钉锤、拔钉器……杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离:力点离支点愈远则愈省力,愈近就愈费力;还要看重点(阻力点)和支点的距离:重点离支点越近则越省力,越远就越费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠力点一定比重点距离支点近,所以永远是省力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)剪纸板时花剪较省力但是费时;而洋裁剪则费力但是省时。
1.剪较硬物体
要用较大的力才能剪开硬的物体,这说明阻力较大。用动力臂较长、阻力臂较短的剪刀。
2.剪纸或布
用较小的力就能剪开纸或布之类较软的物体,这说明阻力较小,同时为了加快剪切速度,刀口要比较长。用动力臂较短、阻力臂较长的剪刀。
3.剪树枝
修剪树枝时,一方面树枝较硬,这就要求剪刀的动力臂要长、阻力臂要短;另一方面,为了加快修剪速度,剪切整齐,要求剪刀刀口要长。用动力臂较长、阻力臂较短,同时刀口较长的剪刀。
[编辑本段]投资中的杠杆
杠杆比率
认股证的吸引之处,在于能以小博大。投资者只须投入少量资金,便有机会争取到与投资正股相若,甚或更高的回报率。但挑选认股证之时,投资者往往把认股证的杠杆比率及实际杠杆比率混淆,两者究竟有什么分别?投资时应看什么?
想知道是否把这两个名词混淆,可问一个问题:假设同一股份有两只认股证选择,认股证A的杠杆是6.42倍,而认股证B的杠杆是16.22倍。当正股价格上升时,哪一只的升幅较大?可能不少人会选择答案B。事实上,要看认股证的潜在升幅,我们应比较认股证的实际杠杆而非杠杆比率。由于问题缺乏足够资料,所以我们不能从中得到答案。
杠杆比率=正股现货价÷(认股证价格x换股比率)
杠杆反映投资正股相对投资认股证的成本比例。假设杠杆比率为10倍,这只说明投资认股证的成本是投资正股的十分之一,并不表示当正股上升1%,该认股证的价格会上升10%。
以下有两只认购证,它们的到期日和引伸波幅均相同,但行使价不同。从表中可见,以认购证而言,行使价高于正股价的幅度较高,股证价格一般较低,杠杆比率则一般较高。但若投资者以杠杆来预料认股证的潜在升幅,实际表现可能令人感到失望。当正股上升1%时,杠杆比率为6.4倍的认股证A实际只上升4.2%(而不是6.4%),而杠杆比率为16.2倍的认股证B实际只上升6%(而不是16.2.%)。
阿基米德的“理想”
阿基米德进行过力学方面的研究,并将其运用于杠杆和滑轮的机械设计。据说,为了宣扬其研究成果而夸口说:“给我一个支点和足够长的杠杆,我可把地球搬动给你们看。”虽然,他没有搬动地球,却用滑轮移动了大船。
设支点在地球外1万米处,如果一个在地球上可提起60kg的物体,则需要在支点外的1x1024km处才能搬动地球,地球质量6x1024kg.
1个天文单位为地球到太阳之间的平均距离,即1A.U.=1.5x108km,一光年为光在一年前进的距离,1L.Y.≈ 9.5x1012km.
· 支点在地球外10km(1万米)处,这是个难题。
· 11亿光年,远远超出了我们所在的银河系,也越过了从宇宙能得到信息的极限。
——这就是阿基米德的“理想”。
㈡ 什么是经济学中的杠杆原理
经济杠杆(economic lever),是在社会主义条件下,国家或经济组织利用价值规律和物质利益原则影响、调节和控制社会生产、交换、分配、消费等方面的经济活动,以实现国民经济和社会发展计划的经济手段。包括价格、税收、信贷、工资、奖金、汇率,等等。
运用经济杠杆,就是根据国家或经济组织的既定目标,从生产、交换、分配、消费等方面对从事经济活动的经济单位和当事人造成有利条件或不利条件。利用这种经济利益的变动作为阀门,以影响、调节、控制它们的经济活动,促进或保证既定目标的实现。
在力学里,典型的杠杆(lever)是置放连结在一个支撑点上的硬棒,这硬棒可以绕着支撑点旋转。古希腊人将杠杆归类为简单机械,并且严谨地研究出杠杆的操作原理。
某些杠杆能够将输入力放大,给出较大的输出力,这功能称为“杠杆作用”。杠杆的机械利益是输出力与输入力的比率。
经济学中的杠杆的功能:
1、调节作用
是指在生产总过程中发挥调节生产、分配、交换、消费比例使之平衡的作用。例如,在经济管理中利用价格杠杆,提高某些短线产品价格可以促进这些产品的生产,降低长线产品的价格可以减少该产品的生产。
在流通中,通过提高供不应求商品的价格可以减少需求,降低供过于求的商品价格可以限制生产,这就是调节供求比例使之平衡的作用。
2、推动作用
是指在生产总过程及各个方面、各个环节中调动人们改善经营管理,厉行节约,讲求经济效果的作用。不同的经济杠杆不论其作用是相同的或不相同的,往往有相互补充、取长补短的作用。比如,利用价格杠杆调动企业合理地利用能源,对煤定低价,对石油定高价以推动企业少用石油。
另外一个作用就是低价将限制生产,高价鼓励生产的作用,煤炭价格定低了势必减少煤炭生产的收益甚至造成亏损,从而打击煤炭生产的积极性,而石油价高造成石油企业得到额外的收益,造成石油企业虚假的经济效果掩盖经营中的浪费,不利于加强经济核算制。
㈢ 初中物理杠杆的知识点
公基考试涉及到的物理常识内容庞杂,覆盖面广泛,本文就常见的杠杆原理这个知识点进行梳理。
杠 杆
1. 定义:在力的作用下能绕着固定点转动的硬棒。杠杆可以是任意形状的硬棒。
2. 杠杆五要素(如下图所示):
支点:杠杆绕着转动的点,通常用字母O来表示。
动力:使杠杆转动的力,通常用F1来表示。
阻力:阻碍杠杆转动的力,通常用F2来表示。
动力臂:从支点到动力作用线的距离,通常用L1表示。
阻力臂:从支点到阻力作用线的距离,通常用L2表示。
(注意:杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点)。
㈣ 采购杠杆原理的应用
钳子是采购杠杆原理。
原理简介: 杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• L1=F2•L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
古希腊科学家阿基米德有这样一句流传千古的名言:“假如给我一个支点,我就能把地球挪动!”这句话有着严格的科学根据.
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
概念分析:在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂) * 施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
杠杆分类;杠杆可分为省力杠杆、费力杠杆和等臂杠杆。这几类杠杆有如下特征:
1.省力杠杆:L1>L2, F1<F2 ,省力、费距离。如拔钉子用的羊角锤、铡刀,瓶盖扳子等。
2.费力杠杆: L1<L2, F1>F2,费力、省距离,如钓鱼竿、镊子等。
㈤ 研究杠杆的作用
物理学中把在力的作用下可以围绕固定点转动的坚硬硬物体叫做杠杆。杠杆绕着转动的固定点叫做支点,推动杠杆运动的力叫做动力,阻碍杠杆运动的力叫做阻力。支点到力的作用线之间的距离叫做力臂。
动力臂长于阻力臂的杠杆是省力杠杆,阻力臂长于动力臂的是费力杠杆。省力杠杆同时也是费距杠杆,费力杠杆虽然费力但却省距。
杠杆是六种简单机械之一
[编辑] 早期研究
杠杆的研究可以追溯到公元前3世纪的古希腊科学家阿基米德
[编辑] 杠杆原理
当动力与动力臂的乘积等于阻力与阻力臂的乘积时,杠杆平衡。杠杆平衡时杠杆处于静止状态或者匀速转动状态。
只要在日常生活中,随时留心,你将发现许多应用杠杆的例子。如剪刀、开罐器、钳子、自动锁、电灯开关,螺丝起子、火车铁轨交换控制杆等,这些杠杆有的是省力的,有些是省时的,有些是为工作方便的。凡施力臂比抗力臂长的杠杆则省力。
杠杆五要素
动力F1
阻力F2
动力臂L1
阻力臂L2
支点O
杠杆平衡条件
当杠杆静止不动时或杠杆匀速转动时杠杆处于平衡状态。 平衡时 F1 * L1 = F2 * L2
[编辑] 关于杠杆的名言
给我一个支点,我可以撬动地球。——阿基米德
㈥ 杠杆原理在日常生活中的应用之研究
日常生活中的杠杆有很多:自行车手把(省力),吃饭用的筷子(费力),门(省力),撬棒(省力),羊角锤(省力),船桨(费力),钓鱼竿(费力),钢筋钳(省力),水龙头(省力).相信这些东西在农村很常见.
㈦ 什么是杠杆原理
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
㈧ 杠杆原理在日常生活中的应用之研究
物理学中把在力的作用下可以围绕固定点转动的坚硬物体叫做杠杆。
五要素:动力,阻力,动力臂,阻力臂和支点
1、支点:杠杆的固定点,通常用O表示。
2、动力:驱使杠杆转动的力,用F1表示。
3、阻力:阻碍杠杆转动的力,用F2表示。
4、动力臂:支点到动力作用线的垂直距离叫动力臂,用L1表示。
5、阻力臂:支点到阻力作用线的垂直距离叫阻力臂,用L2表示。
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
㈨ 生活中的杠杆原理应用
杠杆原理基本有3种类型,第一类的杠杆例子是天平、剪刀、钳子等,第二类杠杆的例子是开瓶器、胡桃夹,第三类杠杆如锤子、镊子等。
杠杆分为3种杠杆。第一种是省力的杠杆,如:开瓶器等。第二种是费力的杠杆,如:镊子等。第三种是既不省力也不费力的杠杆,如:天平、钓鱼竿等。
还有工程上的吊车,滑轮等。
(9)杠杆原理的应用研究扩展阅读:
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作"不证自明的公理",然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
如钳子、杆秤杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。
动力×动力臂=阻力×阻力臂,用代数式表示为F1•l1=F2•l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。
从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。
但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。杠杆可分为省力杠杆、费力杠杆和等臂杠杆。