1. 工程材料 中杠杆原理 谁能详细说明下 就是用来计算各成分量的那个原理
在工程材料中没有杠杆原理,只有杠杆定律,杠杆定律适用所有两相平衡。
杠杆规则广泛应用在相平衡中,可以简述为 “一相的量乘以本侧线段长度, 等于另一相的量乘以另一侧线段的长”。由于形式上与力学中杠杆定理十分相似,故称为杠杆定律。
杠杆定律是确定两相区内两个组成相(平衡相)以及相的成分和相的相对量的重要法则。
若要确定成分为C含量Wc=x%的铁碳合金在t温度下是由哪两个相组成以及各相的成分时,可通过该合金线上相当于t温度画一水平线,水平线所接触的两个相区中的相就是该合金在t温度时共存的两个相,交点的横坐标就是在该温度下平衡的两个相的成分,两相的相对量和水平线被Wc=x%合金线分成的两线段的长度成反比。
(1)杠杆原理工作图扩展阅读:
利用杠杆定律求解铁碳合金的相组分和组织组分的相对量,关键在于分清相组分和组织组分两个概念以及确定杠杆的支点和成分点。
由于杠杆定律只适用于两相区,因此必须依据合金的平衡结晶过程,找出对应的两相区,使组织组分与相应的相组分相对应,才能用杠杆定律计算组织组分和相组分的相对百分含量。
2. 人体俯卧撑时的杠杆原理示意图
在做俯卧撑时人体绕脚尖转动,所以人体可以模型化为一根杠杆。脚尖为支点,人体重力作为阻力,手臂处的支撑力是动力。动力臂大于阻力臂,因此是一个省力杠杆。
在人体中,骨在肌拉力作用下围绕关节轴转动,作用和杠杆相同,人体的骨杠杆运动有三种形式:
1、衡杠杆:支点在力的作用点和重力作用点之间。如颅进行的仰头和俯首运动。
2、省力杠杆:重力作用点在支点和力的作用点之间。如行走时提起足跟的动作,这种杠杆可以克服较大的体重。
3、速度杠杆:力的作用点在重力作用点和支点之间。如肘关节的活动,这种活动必须以较大的力才能克服较小的重力,但运动速度和范围很大。
(2)杠杆原理工作图扩展阅读:
注意事项:
1、运动量不宜一次过大,要注意循序渐进,由易到难,由少到多,由轻到重。
2、根据用户的体质状况,控制合适的运动量,并长期坚持。
3、要做好准备和放松活动,防止受伤和肌肉拉伤。
4、做俯卧撑的个数应该可以一分钟在二十个,总数可以做三十个左右。可以慢慢的加。以后越做越多。
5、同时不建议做标准的俯卧撑,可以选取高位俯卧撑锻炼,即对墙练习,双脚开立与肩同宽,距墙一臂远,面墙站立,两手掌撑在墙上,然后做肘关节屈伸运动。
3. 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省团槐键力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。塌巧要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用明皮代数式表示为F1·
L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
4. 开瓶器是什么杠杆请画出其动力、动力臂、阻力、阻力臂.
开瓶子器是省力杠杆,示意图如下:
5. 手推车的杠杆示意图
轮子的轴是支点。G:阻力;F:动力
红色线L1:动力臂
蓝色线L2:阻力臂
6. 自拍杆的杠杆原理示意图,支点,动力,阻力分别是什么
1、支点:
杠杆发生作用时起支撑作用固定不动的一点(除动滑轮外)。
2、动力:
使机械作功的各种作用力。
3、阻力:
阻力,又称后曳力、空气阻力或流体阻力,是物体在流体中相对运动所产生与运动方向相反的力。
(6)杠杆原理工作图扩展阅读
相关理论:
在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。
相关公理:
1、在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡。
2、在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾。
3、在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾。
7. 画出扫把的杠杆示意图(五要素)
扫把的杠杆示意图(五要素)如下图:
杠杆五要素
(1)支点:杠杆绕着转动的点,通常用字母O来表示。
(2)动力:使杠杆转动的力,通常用F1来表示。
(3)阻力:阻碍杠杆转动的力,通常用F2来表示。
(4)动力臂:从支点到动力作用线的距离,通常用L1表示。
(5)阻力臂:从支点到阻力作用线的距离,通常用L2表示。
(7)杠杆原理工作图扩展阅读:
杠杆原理,在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。其中公式这样写:支点到受力点距离(力矩) * 受力 = 支点到施力点距离(力臂)* 施力,这样就是一个杠杆。杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。
(1)例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆(力臂 > 力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。
(2)例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
8. 谁有杠杆原理的图呀急呀
16-2力矩与杠杆原理
一、力矩
物体的转动
(1) 施力於一物体时,物体除了可能会沿力的方向运动外,也可能发生转动。
(2) 转轴: 如下图,当门转动时,除了门轴外,门上各点的位置皆有改变。而门轴上O与O'连线上的各点,其位置并没有改变,这个连线称为转轴。
图:不同的施力点对门的转动效果就不同。
影响门转动效果的因素:
(1) 施力的大小:施力愈大,则门愈容易转动。
(2) 施力的方向: 施力与门面的夹角愈小,门愈不易转动。而施力方向与门面呈垂直时,门的转动效果愈 好。
(3) 著力点:施力垂直於门面时,施力距离转轴较远时,转动效果愈好。
力臂:
(1) 力的作用线:沿表示力的箭号的线段两端延长的直线,称为力的作用线。
(2) 力臂: 由转轴到力的作用线的垂直距离,称为此作用力的力臂。力臂的大小与施力方向、著力点有关,力臂愈大,愈容易使物体转动;力臂为零,表示力的作用线通过转轴,无论施力大小如何,皆无法使物体转动。
力矩:能使物体绕转轴产生转动效果的物理量。
(1) 影响因素:由关门及杠杆转动的例子可知,转动效果和力的大小及力臂有关。
(2) 定义:力臂与力的大小的乘积,称为力矩。
(3) 公式:力矩 = 力臂 × 作用力
L = d × F
(4) 力矩的重力单位: 力臂(d) 力的大小(F) 力矩(L)
MKS制 公尺(m) 公斤重(kgw) 公斤重.公尺(kgw.m)
CGS制 公分(cm) 公克重(gw) 公克重.公分(gw.cm)
(5) 力矩的方向:
(1) 正力矩:逆时钟方向的力矩。
(2) 负力矩:顺时钟方向的力矩。
例题: 大小均为100公斤重的两个力,分别作用於板手上,但位置或方向并不完全相同,如下图(a)(b)所示,试求此两种施力方式对转轴的力矩大小?
解: 力矩=力臂×作用力()(a) ∵力臂=0.2 m
∴力矩=100 kgw×0.2 m=20 kgw.m(逆时钟方向)
(b) ∵力臂=0.1 m
∴力矩=100 kgw×0.1 m=10 kgw.m(顺时钟方向)
答:(a)20 kgw.m(逆时钟方向);(b)10 kgw.m(顺时钟方向)
二、杠杆
杠杆:可绕固定轴线或固定点自由旋转的硬棒。
(1) 构造:如下图。(a)支点 杠杆转动时的固定点。
(b)力臂 有施力臂和抗力臂两种。
(2) 分析:如上图,利用杠杆撬起一块大石头。(a)省力: 人在左端施一较小的力,利用此杠杆在右端举起重量较重之石头。
(b)改变力的作用方向: 支撑的圆木,可作为转轴,当右端下压时,藉转动而在右端产生将石头上举的力量
三、杠杆原理:
杠杆平衡
(1) 现象: 如下图杠杆成静止而不转动。
(2) 分析: 杠杆左边的力矩为25 cm×30 gw=750 cm.gw逆时钟方向……(a)
杠杆右边的力矩为15 cm×50 gw=750 cm.gw顺时钟方向……(b)
由(a)、(b)两式可知当顺时钟方向的力矩=逆时钟方向的力矩时,杠杆可静止而不转动,即杠杆成平衡状态。
(3) 讨论: (a) 由分析可知,杠杆成平衡的条件式,作用在杠杆上顺时钟方向的力矩等於逆时钟方向的力矩。
(b) 如果作用在杠杆上的顺时钟方向的力矩大於逆时钟方向的力矩,杠杆将向顺时钟方向转动。
(c) 如果作用在杠杆上的顺时钟方向的力矩小於逆时钟方向的力矩,杠杆将向逆时钟方向转动。
杠杆原理:
(1) 内容: 当杠杆保持静止平衡状态时,其所受顺时钟方向的力矩与逆时钟方向的力矩大小相等。此关系称为杠杆原理。
(2) 公式: d施×F=d抗×W
(3) 应用: (a)天平:
(b)跷跷板: